切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 267 -271. doi: 10.3877/cma.j.issn.1674-1366.2015.04.002

所属专题: 文献

基础研究

载基因纳米囊泡自组装多层膜组装行为研究
滕伟1, 黄洪章2,(), 王琴梅3()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    3. 510080 广州,中山大学附属第一医院卫生部辅助循环重点实验室
  • 收稿日期:2015-05-07 出版日期:2015-08-01
  • 通信作者: 黄洪章, 王琴梅
  • 基金资助:
    国家自然科学基金(81371665); 广东省科技计划(2013B051000017)

Study on the assembly behavior and mechanism of lipopolysaccharide-amine nanopolymersomes polyelectrolyte films

Wei Teng1, Qinmei Wang2(), Hongzhang Huang3,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2015-05-07 Published:2015-08-01
  • Corresponding author: Qinmei Wang, Hongzhang Huang
  • About author:
    Corresponding author: Huang Hongzhang, Email:
引用本文:

滕伟, 黄洪章, 王琴梅. 载基因纳米囊泡自组装多层膜组装行为研究[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 267-271.

Wei Teng, Qinmei Wang, Hongzhang Huang. Study on the assembly behavior and mechanism of lipopolysaccharide-amine nanopolymersomes polyelectrolyte films[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 267-271.

目的

探讨构建载基因脂多糖胺纳米囊泡(NPs,简称pNPs)/透明质酸(HA)聚电解质多层膜(PEM)的组装行为和机理。

方法

利用含骨形成蛋白2(pBMP-2)基因的pNPs作为阳离子聚电解质,HA作为阴离子聚电解质,通过层层自组装技术在钛或石英玻璃表面构建PEM,记为Ti/Quartz-pNPs-(HA/pNPs)n,其中HA和pNPs依次组装1次为1个组装循环,n为组装循环数。采用原子力显微镜(AFM)观察膜组装过程中形貌和粗糙度值改变;膜表面Zeta电位(electric potential)表征聚电解质膜表面的电荷和吸附特性;利用耗散型石英晶体微天平(QCM-D)实时监测膜的组装过程,探索膜组装规律。

结果

AFM观察发现,pNPs最初以单个离散的纳米粒子形式吸附在石英玻璃表面,随着组装进程,形成越来越粗壮、密集的"树枝"状三维立体纳米结构,膜表面粗糙度值逐渐增大。Zeta电位结果表明,石英玻璃表面经过处理后Zeta电位为-4.83 mV,首层pNPs的表面电位为正,至第3个组装循环后Zeta电位稳定在+18 mV;而HA的Zeta电位最初为负值,随组装层数增加,其表面电荷逐渐趋正;组装过程中Zeta电位呈锯齿状交替上升。石英晶体微天平测量结果显示,随着组装进行膜质量和厚度逐渐增加,且以指数型增长。

结论

载基因pNPs/HA通过层层自组装构建具有独特三维纳米结构的聚电解质多层膜,其增长方式为指数型,具有纳米级粗糙度和非致密性的特点。

Objective

To explore the mechanism and behavior of polyelectrolyte multilayer films (PEM)of gene-loaded lipopolysaccharide-amine nanopolymersomes/hyaluronic acid self assembled on titanium or quartz surface.

Methods

Via layer-by-layer self assembly technology, PEM were constructed on titanium or quartz surface by using bone morphogenetic protein-2(BMP-2)plasmid-loaded lipopolysaccharide-amine nanopolymersomes(pNPs)as a polycation, and hyaluronic acid(HA)as a polyanion. The constructed PEM was defined as substrate-pNPs-(HA/pNPs)n, where a successive deposition of HA and pNPs on substrate surface was defined as one assembly cycle, and n was the cycle number. The changes in topography and roughness of films during assembly were observed by atomic force microscope(AFM). The surface zeta potential was determined by a zeta potential and nanoparticle size analyzer. The assembly procedure was monitored in real time by a quartz crystal microbalance with dissipation(QCM-D), and their assembly patterns were explored.

Results

AFM results showed that pNPs discretely and uniformly adhere to the substrate surface at first, and then with self assembly, a dense and strong tree-like three-dimensional nanostructure is gradually formed, followed by the progressive increase in their surface roughness. The zeta potential of films increases in a zigzag pattern with self assembly. For quartz surface, it is -4.83 mV, and after pNPs deposition, it increases to positive. For films with outmost layer of pNPs, after 3 assembly cycles, it was stabilized at 18 mV. For films with outmost layer of HA, their zeta potential gradually changes from negative to positive with assembly. The QCM-D results showed that with self assembly, the film mass and thickness increase in an exponential type.

Conclusion

Gene-loaded lipopolysaccharide-amine nanopolymersomes/hyaluronic acid can construct polyelectrolyte multilayer films with distinctive three-dimensional nanostructure via layer-by-layer self assembly, their growth mode is exponential, and the films have nano-scale roughness with non-dense texture.

图1 原子力显微镜观察石英玻璃表面(HA/pNPs)n膜形貌图
表1 pNPs-(HA/pNPs)n膜表面Zeta电位测量(±s)
表2 pNPs-(HA/pNPs)4膜组装过程中膜厚度和质量变化值(±s)
图2 QCM-D实时监测pNPs-(HA/pNPs)4膜组装过程的测试界面
[1]
滕伟,黄洪章.聚电解质多层膜在钛表面改性中的应用[J].中华口腔医学杂志,2013,48(10): 636-639.
[2]
胡燕,蔡开勇.层层自组装技术在基因活化生物材料表面工程的应用[J].生物医学工程学杂志,2008,25(3): 738-741.
[3]
Huang Z, Teng W, Liu L, et al. Efficient cytosolic delivery mediated by polymersomes facilely prepared from a degradable, amphiphilic, and amphoteric copolymer[J]. Nanotechnology, 2013, 24(26): 265104.
[4]
滕伟,王琴梅,陈盈,等.钛表面脂多糖胺纳米囊泡-透明质酸聚电解质多层膜的构建及细胞生物学效应[J].中华口腔医学杂志,2014,49(12): 758-762.
[5]
Sauerbrey G. Use of quartz vibrating for weighing thin films on a microbalance[J]. Zeitschrift Fur Physik, 1959, 155(2): 206-222.
[6]
Gopinadhan M, Ivanova O, Ahrens H, et al. The influence of secondary interactions during the formation of polyelectrolyte multilayers: layer thickness, bound water and layer interpenetration[J]. J Phys Chem B, 2007, 111(29): 8426-8434.
[7]
Liu G, Zou S, Fu L, et al. Roles of chain conformation and interpenetration in the growth of a polyelectrolyte multilayer[J]. J Phys Chem B, 2008, 112(14): 4167-4171.
[8]
Clements BA, Bai J, Kucharski C, et al. RGD conjugation to polyethyleneimine does not improve DNA delivery to bone marrow stromal cells[J]. Biomacromolecules, 2006, 7(5): 1481-1488.
[9]
Ren K, Ji J, Shen J. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films[J]. Bioconjug Chem, 2006, 17(1): 77-83.
[10]
Wang X, Ji J. Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery[J]. Langmuir, 2009, 25(19): 11664-11671.
[11]
Kamburova K, Milkova V, Petkanchin I, et al. Effect of pectin charge density on formation of multilayer films with chitosan[J]. Biomacromolecules, 2008, 9(4): 1242-1247.
[12]
Cai K, Hu Y, Jandt KD, et al. Surface modification of titanium thin films via electrostatic self-assembly technique and its in fluence on osteoblast growth behaviors[J]. J Mater Sci Mater Med, 2008, 19(2): 499-506.
[13]
Laugel N, Betscha C, Winterhalter M, et al. Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy[J]. J Phys Chem B, 2006, 110(39): 19443-19449.
[14]
Detzel CJ, Larkin AL, Rajaopalan P. Polyelectrolyte multilayers in tissue engineering[J]. Tissue Eng Part B Rev, 2011, 17(2): 101-113.
No related articles found!
阅读次数
全文


摘要