切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2014, Vol. 8 ›› Issue (06) : 459 -463. doi: 10.3877/cma.j.issn.1674-1366.2014.06.004

基础研究

小鼠颌骨发育过程中长链非编码RNA 的表达谱变化
夏昕1, 伍虹1, 陈绛媛1, 孔祥波1, 阮毅1,()   
  1. 1.510120 广州,中山大学孙逸仙纪念医院口腔科
  • 收稿日期:2014-09-17 出版日期:2014-12-01
  • 通信作者: 阮毅
  • 基金资助:
    国家自然科学基金青年科学基金项目(81200825)

Study on expression profile of long non-coding RNA in the jaw development process of mice

Xin Xia1, Hong Wu1, Jiangyuan Chen1, Xiangbo Kong1, Yi Ruan1,()   

  1. 1.Sun Yat-sen Memorial Hospital, Sun Yatsen University, Guangzhou 510055 China
  • Received:2014-09-17 Published:2014-12-01
  • Corresponding author: Yi Ruan
引用本文:

夏昕, 伍虹, 陈绛媛, 孔祥波, 阮毅. 小鼠颌骨发育过程中长链非编码RNA 的表达谱变化[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(06): 459-463.

Xin Xia, Hong Wu, Jiangyuan Chen, Xiangbo Kong, Yi Ruan. Study on expression profile of long non-coding RNA in the jaw development process of mice[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(06): 459-463.

目的

研究在小鼠颌骨发育过程中长链非编码RNA(lncRNA)的表达谱变化情况。

方法

利用lncRNA-seq 测序技术检测孕18 d 及出生后14 d 的C57 小鼠下颌骨组织样本中的lncRNA 表达谱差异,经对原始数据进行预处理达到均一化后,筛选出差异表达lncRNA,进行分析。

结果

孕18 d 与出生后14 d 的C57 小鼠下颌骨组织样本相比较,2 倍以上变化并有显著差异(FDR≤0.001)的lncRNA,确定为差异表达lncRNA。 2 倍以上变化的共6617 条,占所有lncRNA 的17.16%;2 倍以上升高的共3720 条;2 倍以上降低的共2897 条;5 倍以上升高的共714 条;5 倍以上降低的共288 条;10 倍以上升高为共645 条;10 倍以上降低的共211 条。

结论

孕18 d 与出生后14 d 的C57 小鼠下颌骨组织样本相比较,lncRNA 表达谱发生显著变化。 提示差异性表达的lncRNA可能参与了小鼠颌骨发育的调控。

Objective

To analyze the expression of long non-coding RNA (lncRNA) in the jaw development process of mice.

Methods

lncRNA-seq sequencing technology was used to inspect the difference of lncRNA expression profile between C57 mice of embryonic day 18 and 2 weeks after birth.The lncRNAs with different expression levels were screened out after pretreatment and homogenization of raw data. The hierarchical clustering and volcano scatter diagram analysis were performed.

Results

Mandibular tissues of the C57 mice's of embryonic day 18 and 2 weeks after birth were compared. 6617 lncRNAs showed more than 2 times difference (FDR≤0.001) between the two groups were recognized as lncRNAs with differential expression, accounting for 17.16% of all lncRNAs. Among thses lncRNAs,3720 increased more than 2 times and 2897 reduced more than 2 times, 714 increased more than 5 times and 288 reduced more than 5 times, 645 increased more than 10 times and 211 reduced more than 10 times.

Conclusion

In the jaw development process of mice, the lncRNA expression changes significantly, suggesting that lncRNAs may participate in the regulation of the jaw development.

图1 Non-codi ng RNA 信息分析流程图
表1 差异性表达的lncRNA(部分截选)
图2 C57 小鼠E18D 下颌骨lncRNA 测序覆盖分布
图3 C57 小鼠出生后14 d 下颌骨lncRNA 测序覆盖分布
图4 孕18 d 至出生后14 d 差异性表达的lncRNA
[1]
Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene coexpression network[J]. Nucleic Acids Res, 2011,39(9):3864-3878.
[2]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009,136(4):629-641.
[3]
Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs [J].EMBO Rep, 2012,13(11):971-983.
[4]
Ghosal S, Das S, Chakrabarti J. Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells [J]. Stem Cells Dev,2013,22(16):2240-2253.
[5]
Sheik MJ, Gaughwin PM, Lim B, et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells[J]. RNA,2010,16(2):324-337.
[6]
Audic S, Claverie JM. The significance of digital gene expression profiles[J]. Genome Res, 1997,7(10):986-995.
[7]
Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research [J]. Behav Brain Res, 2001,125(1-2):279-284.
[8]
Chodroff RA, Goodstadt L, Sirey TM, et al. Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes[J]. Genome Biol, 2010,11(7):R72.
[9]
Schoeftner S,Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymeraseⅡ[J]. Nat Cell Biol, 2008,10(2):228-236.
[10]
Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010,142(3):409-419.
[11]
Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase [J]. Nat Med,2008,14(7):723-730.
[12]
Jurka J. Conserved eukaryotic transposable elements and the evolution of gene regulation [J]. Cell Mol Life Sci, 2008,65(2):201-204.
[13]
Martianov I, Ramadass A, Serra BA, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript[J]. Nature, 2007,445(7128):666-670.
[14]
Nagano T, Mitchell JA, Sanz LA, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin[J]. Science, 2008,322(5908):1717-1720.
[15]
Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J].Nature, 2008,454(7200):126-130.
[16]
Beltran M,Puig I,Pena C,et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition[J]. Genes Dev, 2008,22(6):756-769.
[17]
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs:functional surprises from the RNA world[J]. Genes Dev, 2009,23(13):1494-1504.
[18]
Watts R, Johnsen VL, Shearer J, et al. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis [J]. Am J Physiol Cell Physiol, 2013,304(10):C995-C1001.
[19]
Meola N, Pizzo M, Alfano G, et al. The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina[J]. RNA, 2012,18(1):111-123.
[20]
Lempradl A, Ringrose L. How does noncoding transcription regulate Hox genes?[J]. Bioessays, 2008,30(2):110-121.
[21]
Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation [J].Nature, 2011,477(7364):295-300.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[3] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[6] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[7] 张诚实, 陈荣荣, 秦二云, 张青, 刘明, 冯契靓, 赵云峰. 动态测定血浆长链非编码RNA SOX2-OT在COPD 相关性肺动脉高压患者中的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 895-900.
[8] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[9] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[14] 张冬雷, 刘晓燕, 吴三云, 周怡, 张岘. 一例遗传性凝血因子Ⅻ缺乏症家系报道及中国人群凝血因子Ⅻ缺乏症分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(03): 162-169.
[15] 宋奕霄, 陈曦, 张明杰, 王丽平, 庞亚昌, 徐卓明. 心肌血管微环境在先天性心脏病相关的慢性右心衰竭进展中的作用[J/OL]. 中华心脏与心律电子杂志, 2024, 12(04): 239-244.
阅读次数
全文


摘要