切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2014, Vol. 8 ›› Issue (06) : 447 -453. doi: 10.3877/cma.j.issn.1674-1366.2014.06.002

基础研究

miR-181a 对唾液腺腺样囊性癌细胞株侵袭和迁移的影响
何倩婷1, 陈丹1, 刘中华1, 赵婷婷1, 王安训1,()   
  1. 1.510080 广州,中山大学附属第一医院口腔科
  • 收稿日期:2014-06-30 出版日期:2014-12-01
  • 通信作者: 王安训
  • 基金资助:
    广东省科技计划国际合作项目(1011420600001)高校基本科研业务费“中山大学青年教师重点培育计划”(11ykzd09)

The effect of miR-181a on invasion and migration of salivary adenoid cystic carcinoma

Qianting He1, Dan Chen1, Zhonghua Liu1, Tingting Zhao1, Anxun Wang1,()   

  1. 1.Department of Stomatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2014-06-30 Published:2014-12-01
  • Corresponding author: Anxun Wang
引用本文:

何倩婷, 陈丹, 刘中华, 赵婷婷, 王安训. miR-181a 对唾液腺腺样囊性癌细胞株侵袭和迁移的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(06): 447-453.

Qianting He, Dan Chen, Zhonghua Liu, Tingting Zhao, Anxun Wang. The effect of miR-181a on invasion and migration of salivary adenoid cystic carcinoma[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(06): 447-453.

目的

研究与唾液腺腺样囊性癌(SACC)侵袭转移相关的微小RNA(miRNA),探讨miR-181a 对SACC 侵袭和迁移的影响。

方法

选择1 对不同侵袭迁移能力的SACC 细胞株(SACC-LM/SACC-83),采用miRNA 芯片技术分析细胞株中miRNA 的表达差异,初步筛选出与SACC 侵袭转移相关的miRNA。 再通过过表达或沉默细胞株中miR-181a 的表达,进行细胞划痕和Transwell 侵袭实验检测细胞的侵袭、迁移能力。 采用SPSS 17.0 软件对数据进行统计学处理,以P <0.05 为差异具有统计学意义。

结果

miRNA 芯片结果显示,高侵袭迁移能力的SACC 细胞株miR-181a 表达明显下降。细胞划痕和Transwell 实验结果表明,SACC-LM 细胞转染miR-181a mimics 后体外侵袭迁移能力明显受到抑制(t=-5.235,P <0.05);SACC-83 细胞转染miR-181a LNA 后体外侵袭迁移能力有所提高(t=7.713,P <0.05)。

结论

不同侵袭迁移能力的SACC 细胞株中存在多种miRNA 的差异表达。 miR-181a 的表达降低可能导致SACC 细胞侵袭迁移能力的增强。

Objective

To screen microRNA(miRNA) related to the cell invasion and metastasis in salivary adenoid cystic carcinoma (SACC) cell lines and investigate the effect of miR-181a in the cell invasion and migration in SACC.

Methods

A paired SACC cell lines(SACC-LM/SACC-83) with different cell invasive and migrative ability were chosen. MiRNA array was performed to analyze the different expression of miRNAs in the paired SACC cell lines and identify miRNAs related to the cell invasion and metastasis. Then SACC-LM and SACC-83 were transfected with miR-181a mimics and miR-181a LNA respectively. Wound healing assay and transwell assay were used to observe the changes of the cell migration and invasion ability after transfection. Data were analyzed using the Statistical Package for the Social Science (SPSS), Version 17.0. For all statistical analyses, P <0.05 was considered statistically significant.

Results

MiRNA array showed that the expression of miR-181a in SACC-LM cells was lower than SACC-83 cells. Wound healing assay and transwell assay showed that ectopic transfection of the miR-181a mimics into the SACC-LM cells led to inhibition in the cell invasion and migration (t=-5.235,P <0.05). When the SACC-83 cells were treated with miR-181a LNA, an improvement in the cell invasive and migrative ability was observed (t=7.713,P <0.05).

Conclusions

There are various miRNAs expressing differently in SACC cell lines with divergent invasive and migrative ability. Underexpression of miR-181a could enhance the cell invasive and migrative ability of SACC cells.

图1 SACC 细胞株提取物总RNA 的电泳结果 注:1 为SACC-83;2 为SACC-LM
表1 SACC 细胞株提取物总RNA 的质检结果
图2 SACC-LM/SACC-83 miRNA 芯片图 注:图2A 为SACC-LM 细胞miRNA 芯片图;图2B 为SACC-83细胞miRNA 芯片图
图3 部分已命名的miRNA 分子在SACC-LM/SACC-83 的表达差异
表2 SACC-LM 与SACC-83 样品间差异存在统计学意义的miRNA 数据表
miRNA SACC-83组均数 SACC-LM组均数 校正SACC-83组 校正SACC-LM组 SACC-LM/SACC-83
1529-shuf-has-mir-93 478 656 6.966 11.960 1.72
1532-rev-mir-150 794 1202 7.130 13.830 1.94
1565-shuf-mir-34c 345 254 8.107 8.313 1.03
hsa-miR-105 494 200 11.130 6.183 0.56
hsa-miR-135a 578 407 9.429 8.441 0.90
hsa-miR-148a 365 116 10.950 5.389 0.49
hsa-miR-15b 340 120 10.310 5.680 0.55
hsa-miR-16 449 145 11.700 5.461 0.47
hsa-miR-17 456 301 9.122 7.978 0.87
hsa-miR-181a 564 162 13.080 5.189 0.40
hsa-miR-181b 405 131 11.290 5.450 0.48
hsa-miR-181c 295 102 9.822 5.626 0.57
hsa-miR-181d 341 133 10.000 5.975 0.60
hsa-miR-185 656 304 11.410 6.787 0.59
hsa-miR-186 314 128 9.567 6.113 0.64
hsa-miR-202 1306 1 114.200 0.235 0.00
hsa-miR-21 615 217 12.440 5.822 0.47
hsa-miR-214 984 454 12.350 7.132 0.58
hsa-miR-216b 238 289 6.071 10.630 1.75
hsa-miR-221 298 110 9.681 5.805 0.60
hsa-miR-25 1047 990 9.072 11.000 1.21
hsa-miR-27b 512 489 8.157 9.858 1.21
hsa-miR-296-3p 2170 1793 10.580 11.320 1.07
hsa-miR-29a 390 142 10.710 5.796 0.54
hsa-miR-30c-2 362 95 11.570 4.906 0.42
hsa-miR-335 448 358 8.460 8.835 1.04
hsa-miR-338-5p 351 4 29.980 0.911 0.03
hsa-miR-363 272 308 6.488 10.300 1.59
hsa-miR-383 403 313 8.318 8.629 1.04
hsa-miR-421 391 384 7.567 9.770 1.29
hsa-miR-452 545 417 9.010 8.784 0.97
hsa-miR-487a 421 411 7.725 9.795 1.27
hsa-miR-503 363 336 7.577 9.417 1.24
hsa-miR-510 369 195 9.282 7.011 0.76
hsa-miR-513-5p 620 403 9.885 8.131 0.82
hsa-miR-548a-5p 330 270 7.702 8.773 1.14
hsa-miR-548b-5p 371 311 7.907 8.940 1.13
hsa-miR-548c-3p 348 19 18.420 2.186 0.12
hsa-miR-568 365 293 7.988 8.733 1.09
hsa-miR-629 346 127 10.250 5.794 0.57
hsa-miR-630 928 960 8.586 11.370 1.32
hsa-miR-638 1111 759 10.530 9.196 0.87
hsa-miR-674 1857 860 13.350 7.954 0.60
hsa-miR-877 756 458 10.580 8.002 0.76
hsa-miR-890 455 1 55.080 0.354 0.01
hsa-miR-892b 265 339 6.174 10.960 1.78
hsa-miR-923 5209 5919 10.140 15.260 1.51
hsa-miR-93 354 235 8.470 7.884 0.93
hsa-miR-933 771 160 16.040 4.458 0.28
hsa-miR-944 539 1 62.050 0.332 0.01
图4 SACC-LM/SACC-83 细胞转染效率图(倒置荧光显微镜 ×40) 注:图4A 为转染mimics NC-FAM 6 h 后SACC-LM 细胞(暗视野);图4B 为转染mimics NC-FAM 6 h 后SACC-LM 细胞(明视野);图4C 为转染miR-181a LNA 6 h 后SACC-83 细胞(暗视野);图4D 为转染miR-181a LNA 6 h 后SACC-83 细胞(明视野)
图5 SACC-LM 细胞转染miR-181a mimics 后侵袭迁移能力下降 注:图5A 为唾液腺腺样囊性癌细胞株SACC-LM 转染miR-181a mimics 24 h 后,mimics NC 组划痕区变窄,miR-181a mimics 组划痕依然明显(×40);图5B 为miR-181a mimics 组和mimics NC 组穿膜细胞图(×100),miR-181a mimics 组穿膜细胞数目显著下降;图5C 为miR-181a mimics 组和mimics NC 组穿膜细胞数统计学分析,aP <0.05
图6 SACC-83 细胞转染miR-181a LNA 后侵袭迁移能力增强 注:图6A 为唾液腺腺样囊性癌细胞株SACC-83 转染miR-181a LNA 24 h 后,miR-181a LNA 组划痕区变窄,LNA NC 组划痕依然明显(×40);图6B 为miR-181a LNA 组和LNA NC 组穿膜细胞图(×100),miR-181a LNA 组穿膜细胞数目增加;图6C 为miR-181a LNA 组和LNA NC 组穿膜细胞数统计学分析,aP <0.05
[1]
Spiro RH, Huvos AG, Strong EW. Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases[J]. Am J Surg, 1974,128(4):512-520.
[2]
Bradley PJ. Adenoid cystic carcinoma of the head and neck: a review [J]. Curr Opin Otolaryngol Head Neck Surg, 2004,12(2):127-132.
[3]
Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science, 2001,294(5543):858-862.
[4]
林钊宇,李劲松,武东辉,等. 涎腺腺样囊性癌侵袭转移相关微小RNA 的筛选[J/CD]. 中华口腔医学研究杂志:电子版,2010,4(6):563-569.
[5]
Marcucci G, Mrózek K, Radmacher MD, et al. The prognostic and functional role of microRNAs in acute myeloid leukemia[J]. Blood, 2011,117(4):1121-1129.
[6]
Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis[J]. Leukemia, 2007,21(5):912-916.
[7]
Schwind S, Maharry K, Radmacher MD, et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study [J]. J Clin Oncol, 2010,28(36):5257-5264.
[8]
Shi L, Cheng Z, Zhang J, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells[J].Brain Res, 2008(1236):185-193.
[9]
Ciafrè SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma [J]. Biochem Biophys Res Commun, 2005,334(4):1351-1358.
[10]
Gao W, Yu Y, Cao H, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis[J]. Biomed Pharmacother, 2010,64(6):399-408.
[11]
Li W,Xie L,He X,et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma [J]. Int J Cancer, 2008,123(7):1616-1622.
[12]
Ji J,Yamashita T,Budhu A,et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells [J]. Hepatology, 2009,50(2):472-480.
[13]
Shin KH, Bae SD, Hong HS, et al. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras[J]. Biochem Biophys Res Commun, 2011,404(4):896-902.
[1] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[2] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[3] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[4] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[5] 赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.
[6] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[7] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[8] 刘杜先, 张杰东, 付鲁渝, 熊志强, 龚程, 张小雅, 高明悦, 孟俊宏, 刘兰侠. 沉默circXPO1抑制肝癌细胞恶性生物学行为[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 159-166.
[9] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[10] 曾谣, 谢琴, 陈显育, 王平根, 毛玲秋, 何丹玲, 杜飞, 郑希彦, 何函樨. CDC42EP2基因与肝癌预后、免疫细胞浸润关系及其对细胞迁移侵袭的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 363-369.
[11] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 朱镭, 朱庆义. 金氏菌属:引起婴幼儿侵袭性传染病的新发病原体[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 229-237.
[15] 张芳芳, 李军, 赵玉洁, 于彤, 宁春平. 侵袭性血管黏液瘤的影像学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 254-259.
阅读次数
全文


摘要