切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2014, Vol. 8 ›› Issue (03) : 256 -260. doi: 10.3877/cma.j.issn.1674-1366.2014.03.016

综述

TGF-β 信号通路与口腔鳞状细胞癌的研究进展
谢舒乐1, 杨宏宇1,()   
  1. 1.518036 深圳,北京大学深圳医院口腔颌面外科
  • 收稿日期:2013-11-07 出版日期:2014-06-01
  • 通信作者: 杨宏宇
  • 基金资助:
    广东省自然科学基金(S2012010010382)深圳市创新委国际合作项目(ZYA201106100080A)深圳市创新委基础研究(JCY20130402114702120)

Research progress about role of TGF-β signaling pathway in oral squamous cell carcinoma

Shule Xie1, Hongyu Yang1,()   

  1. 1.Peking University Shenzhen Hospital, Shenzhen 518036, China
  • Received:2013-11-07 Published:2014-06-01
  • Corresponding author: Hongyu Yang
引用本文:

谢舒乐, 杨宏宇. TGF-β 信号通路与口腔鳞状细胞癌的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(03): 256-260.

Shule Xie, Hongyu Yang. Research progress about role of TGF-β signaling pathway in oral squamous cell carcinoma[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(03): 256-260.

转化生长因子β(TGF-β)是一个调节上皮细胞增殖、免疫功能和新血管生成的关键分子,TGF-β 及其信号通路在维持上皮细胞内环境稳态时发挥重要作用。 TGF-β 信号通路的失调在众多恶性肿瘤中均可见,包括口腔鳞状细胞癌(OSCC)。 TGF-β 信号通路的失调会导致细胞过度增殖并抑制细胞凋亡,基因组不稳定性增强,促进肿瘤上皮间质转化。 而肿瘤炎症微环境中TGF-β会代偿性升高,提高肿瘤细胞的增殖及迁移能力,促进癌巢内的新血管生成,增强炎症对肿瘤的促进作用。 本文就TGF-β 信号通路在OSCC 发生、发展中所发挥的作用做一综述。

Transforming growth factor-β(TGF-β) is a key regulator of epithelial cell proliferation,immune function and angiogenesis. Because TGF-β signaling maintains epithelial homeostasis,dysregulated TGF-β signaling is common in many malignancies, including oral squamous cell carcinoma(OSCC). Defective TGF-β signaling in epithelial cells causes hyperproliferation, reduced apoptosis and increased genomic instability, and the compensatory increase in TGF-β production by tumor epithelial cells with TGF-β signaling defects further promotes tumor growth and metastases by increasing angiogenesis and inflammation in tumor stromal cells. We review the role of TGF-β signaling in the development of OSCC.

[1]
Shi Y, Massagué J. Mec hanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell, 2003,113(6):685-700.
[2]
Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer [J]. J Pathol, 2011,223(2):205-218.
[3]
Massagué J. TGFbeta in Cancer [J]. Cell, 2008,134(2):215-230.
[4]
Massagué J, Seoane J, Wotton D. Smad transcription factors[J]. Genes Dev, 2005,19(23):2783-2810.
[5]
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways[J]. Cell Tissue Res, 2012,347(1):11-20.
[6]
Jang CW, Chen CH, Chen CC, et al. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase[J]. Nat Cell Biol, 2002,4(1):51-58.
[7]
Padua D, Massagué J. Roles of TGFbeta in metastasis [J]. Cell Res, 2009,19(1):89-102.
[8]
Suzuki HI, Kiyono K, Miyazono K. Regulation of autophagy by transforming growth factor-β (TGF-β) signaling [J]. Autophagy,2010,6(5):645-647.
[9]
Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy[J]. Int J Biol Sci, 2012,8(7):964-978.
[10]
Andarawewa KL, Kirshner J, Mott JD, et al. TGFβ: roles in DNA damage responses/ /Jakowlow SB. Transforming Growth Factor-β in Cancer Therapy, Volume Ⅱ [M]. Clifton:Humana Press, 2008:321-333.
[11]
Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation [J]. J Clin Invest, 2009,119(11):3408-3419.
[12]
Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease [J]. Nat Cell Biol, 2007,9(9):1000-1004.
[13]
Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis [J]. Curr Opin Genet Dev,2002,12(1):22-29.
[14]
Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma [J]. Oral Oncol, 2013,49(4):287-292.
[15]
Yang TL, Wu CT, Ko JY, et al. Significance of tumor satellite variables in reflecting the epithelial-mesenchymal transition of tongue cancer [J].Oral Oncol,2011,47(8):720-724.
[16]
Sun L, Diamond ME, Ottaviano AJ, et al. Transforming growth factor-beta1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression [J]. Mol Cancer Res,2008,6(1):10-20.
[17]
Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions [J]. Int J Oncol,2010,37(3):663-668.
[18]
Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development[J]. Clin Exp Metastasis,2008,25(6):593-600.
[19]
Joseph MJ, Dangi-Garimella S, Shields MA, et al. Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells [J]. J Cell Biochem, 2009,108(3):726-736.
[20]
Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, et al.TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway [J]. Biochem Biophys Res Commun,2008,371(4):713-718.
[21]
Cheng N,Chytil A,Shyr Y,et al.Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion [J]. Mol Cancer Res, 2008,6(10):1521-1533.
[22]
Daly AJ, McIlreavey L, Irwin CR. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer [J]. Oral Oncol, 2008,44(7):646-651.
[23]
Dasgupta S, Bhattacharya-Chatterjee M, O'Malley BW Jr, et al. Inhibition of NK cell activity through TGF-beta1 by downregulation of NKG2D in a murine model of head and neck cancer [J]. J Immunol,2005,175(8):5541-5550.
[24]
Costa NL, Valadares MC, Souza PP, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma[J]. Oral Oncol, 2013,49(3):216-223.
[25]
Lee JJ, Chang YL, Lai WL, et al. Increased prevalence of interleukin-17-producing CD4+ tumor infiltrating lymphocytes in human oral squamous cell carcinoma [J]. Head Neck, 2011,33(9):1301-1308.
[26]
Martinez GJ, Zhang Z, Reynolds JM, et al. Smad2 positively regulates the generation of Th17 cells [J]. J Biol Chem, 2010,285(38):29039-29043.
[27]
Schwarz S, Butz M, Morsczeck C, et al. Increased number of CD25 FoxP3 regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double staining [J]. J Oral Pathol Med, 2008,37(8):485-489.
[28]
Strauss L,Bergmann C,Gooding W, et al. The frequency and suppressor function of CD4 + CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck [J]. Clin Cancer Res, 2007,13(21):6301-6311.
[29]
Costea DE, Hills A, Osman AH, et al. Identification of two distinctcarcinoma-associatedfibroblastsubtypeswith differential tumor-promoting abilities in oral squamous cell carcinoma [J]. Cancer Res, 2013,73(13):3888-3901.
[30]
Lu SL, Herrington H, Reh D, et al. Loss of transforming growth factor-beta type Ⅱ receptor promotes metastatic headand-neck squamous cell carcinoma [J]. Genes Dev, 2006,20(10):1331-1342.
[31]
Chu TH, Yang CC, Liu CJ, et al. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRⅡ[J]. Cancer Lett, 2013,337(1):115-124.
[32]
Fukai Y, Fukuchi M, Masuda N, et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma[J]. Int J Cancer, 2003,104(2):161-166.
[33]
Guasch G, Schober M, Pasolli HA, et al. Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia [J]. Cancer Cell, 2007,12(4):313-327.
[34]
Kang SH, Bang YJ, Im YH, et al. Transcriptional repression of the transforming growth factor-beta type Ⅰreceptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer [J]. Oncogene, 1999,18(51):7280-7286.
[35]
Chen T, Yan W, Wells RG, et al. Novel inactivating mutations of transforming growth factor-beta typeⅠreceptor gene in headand-neck cancer metastases [J]. Int J Cancer, 2001,93(5):653-661.
[36]
Honjo Y, Bian Y, Kawakami K, et al. TGF-beta receptor Ⅰconditional knockout mice develop spontaneous squamous cell carcinoma [J]. Cell Cycle, 2007,6(11):1360-1366.
[37]
Bian Y, Terse A, Du J, et al. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway[J]. Cancer Res, 2009,69(14):5918-5926.
[38]
Iamaroon A, Pattamapun K, Piboonniyom SO. Aberrant expression of Smad4, a TGF-beta signaling molecule, in oral squamous cell carcinoma[J]. J Oral Sci, 2006,48(3):105-109.
[39]
Takebayashi S, Ogawa T, Jung KY, et al. Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma[J]. Cancer Res, 2000,60(13):3397-3403.
[40]
Xie W, Aisner S, Baredes S, et al. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck, 2013,35(1):76-85.
[41]
Qiu W, Schönleben F, Li X, et al. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4 [J]. Cancer Lett, 2007,245(1):163-170.
[42]
Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation [J]. J Clin Invest, 2009,119(11):3408-3419.
[43]
Kutler DI, Auerbach AD, Satagopan J, et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia[J]. Arch Otolaryngol Head Neck Surg, 2003,129(1):106-112.
[44]
Wreesmann VB, Estilo C, Eisele DW, et al. Downregulation of Fanconi anemia genes in sporadic head and neck squamous cell carcinoma [J]. ORL J Otorhinolaryn-gol Relat Spec, 2007,69(4):218-225.
[45]
Berton TR,Matsumoto T,Page A,et al. Tumor formation in mice with condi-tional inactivation of Brca1 in epithelial tissues [J].Oncogene, 2003,22(35):5415-5426.
[46]
Kitamura T, Kometani K, Hashida H, et al. SMAD4-deficient intestinal tumors recruit CCR1 + myeloid cells that promote invasion[J]. Nat Genet,2007,39(4):467-475.
[47]
Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppres-sion of gastrointestinal cancer [J]. Nature,2006,441(7096):1015-1019.
[48]
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head and neck cancer [J]. FEBS Lett, 2012,586(14):1984-1992.
[49]
Li AG, Lu SL, Zhang MX, et al. Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis [J]. Cancer Res, 2004,64(21):7836-7845.
[50]
Hoot KE, Lighthall J, Han G, et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression [J]. J Clin Invest,2008,118(8):2722-2732.
[51]
Hoot KE, Oka M, Han G, et al. HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion [J]. J Clin Invest, 2010,120(10):3606-3616.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 王璐怡, 杜晨光, 王丛笑, 梁雅慧, 吕雪莹, 张瑶, 郄淑燕. 自拟独活寄生汤治疗风寒湿痹型膝骨关节炎效果[J/OL]. 中华关节外科杂志(电子版), 2022, 16(06): 715-720.
[3] 张廷帅, 邹健宇, 陈汉政, 刘日许, 郑仕聪, 陈艺, 张姝江, 姚咏嫦. 三维共培养体系促进去分化的软骨细胞再分化的实验研究[J/OL]. 中华关节外科杂志(电子版), 2019, 13(06): 693-698.
[4] 孙蕾蕾, 朱旅云, 杨少玲. 负压伤口疗法对糖尿病足轻、中度缺血创面肉芽组织转化生长因子-β1表达的影响[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(01): 20-25.
[5] 李文清, 刘海潮, 梁建锋, 陈冠辉, 竺越, 张鸣, 侯劲松. 转化生长因子β1增强糖酵解促进舌鳞状细胞癌细胞上皮间充质转化及迁移与侵袭[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 144-151.
[6] 赛甫丁·艾比布拉, 买买提·依斯热依力, 李义亮, 王永康, 王志, 克力木·阿不都热依木. 不同材质补片修补对腹壁疝大鼠腹横筋膜组织转化生长因子-β1及Collagen合成代谢的作用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 161-167.
[7] 陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇. 颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 630-634.
[8] 李佳怡, 王亚菲, 郝月琴, 陈建攸. CXCL14、TGF-β1和CTGF水平与特发性肺纤维化的关系[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(02): 222-224.
[9] 王强, 陈鑫, 翁小雪, 庄永泽, 俞国庆. 硫酸吲哚酚通过TGF-β1诱导腹膜间皮细胞转分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 329-334.
[10] 曾旖, 张从纪, 叶艳艳, 郭俊峰, 杨军, 熊宇. 口腔鳞状细胞癌患者外周血Naa10及淋巴细胞免疫分型的特点及临床意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 193-198.
[11] 沈秉正, 祝成亮, 胡振夏, 李丹, 王娜, 陈莹, 李景, 喻研. 美沙拉秦联合肠胃宁治疗溃疡性结肠炎疗效及对TGF-β1、IGF-1的影响[J/OL]. 中华结直肠疾病电子杂志, 2019, 08(02): 131-134.
[12] 陈丽娟, 陈婷, 陈雪兰, 叶文文, 黄丽娟, 胡建民. 转化生长因子β1对人巩膜成纤维细胞Smad泛素化调节因子2和Ⅰ型胶原α1影响的研究[J/OL]. 中华眼科医学杂志(电子版), 2019, 09(01): 14-20.
[13] 宋波, 程云, 姜玉章, 沈冲, 薛永, 李婴慧. MicroRNA-938及其靶基因TGFBR1单核苷酸多态性与出血性脑卒中的关联研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(04): 205-209.
[14] 张艳, 秦方园, 赵荣, 钱文娟, 顾毅锋, 张亚兵. 富亮氨酸a2糖蛋白1与类风湿关节炎活动性的相关性[J/OL]. 中华临床医师杂志(电子版), 2022, 16(11): 1126-1130.
[15] 朱江, 董伟杰, 黄丹, 宋冬惠, 吴森斌. 口腔鳞状细胞癌组织中lncRNA DLEU1的表达及其与临床病理参数和预后的关系[J/OL]. 中华临床医师杂志(电子版), 2022, 16(02): 131-135.
阅读次数
全文


摘要