[1] |
Shi Y, Massagué J. Mec hanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell, 2003,113(6):685-700.
|
[2] |
Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer [J]. J Pathol, 2011,223(2):205-218.
|
[3] |
Massagué J. TGFbeta in Cancer [J]. Cell, 2008,134(2):215-230.
|
[4] |
Massagué J, Seoane J, Wotton D. Smad transcription factors[J]. Genes Dev, 2005,19(23):2783-2810.
|
[5] |
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways[J]. Cell Tissue Res, 2012,347(1):11-20.
|
[6] |
Jang CW, Chen CH, Chen CC, et al. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase[J]. Nat Cell Biol, 2002,4(1):51-58.
|
[7] |
Padua D, Massagué J. Roles of TGFbeta in metastasis [J]. Cell Res, 2009,19(1):89-102.
|
[8] |
Suzuki HI, Kiyono K, Miyazono K. Regulation of autophagy by transforming growth factor-β (TGF-β) signaling [J]. Autophagy,2010,6(5):645-647.
|
[9] |
Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy[J]. Int J Biol Sci, 2012,8(7):964-978.
|
[10] |
Andarawewa KL, Kirshner J, Mott JD, et al. TGFβ: roles in DNA damage responses/ /Jakowlow SB. Transforming Growth Factor-β in Cancer Therapy, Volume Ⅱ [M]. Clifton:Humana Press, 2008:321-333.
|
[11] |
Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation [J]. J Clin Invest, 2009,119(11):3408-3419.
|
[12] |
Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease [J]. Nat Cell Biol, 2007,9(9):1000-1004.
|
[13] |
Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis [J]. Curr Opin Genet Dev,2002,12(1):22-29.
|
[14] |
Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma [J]. Oral Oncol, 2013,49(4):287-292.
|
[15] |
Yang TL, Wu CT, Ko JY, et al. Significance of tumor satellite variables in reflecting the epithelial-mesenchymal transition of tongue cancer [J].Oral Oncol,2011,47(8):720-724.
|
[16] |
Sun L, Diamond ME, Ottaviano AJ, et al. Transforming growth factor-beta1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression [J]. Mol Cancer Res,2008,6(1):10-20.
|
[17] |
Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions [J]. Int J Oncol,2010,37(3):663-668.
|
[18] |
Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development[J]. Clin Exp Metastasis,2008,25(6):593-600.
|
[19] |
Joseph MJ, Dangi-Garimella S, Shields MA, et al. Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells [J]. J Cell Biochem, 2009,108(3):726-736.
|
[20] |
Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, et al.TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway [J]. Biochem Biophys Res Commun,2008,371(4):713-718.
|
[21] |
Cheng N,Chytil A,Shyr Y,et al.Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion [J]. Mol Cancer Res, 2008,6(10):1521-1533.
|
[22] |
Daly AJ, McIlreavey L, Irwin CR. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer [J]. Oral Oncol, 2008,44(7):646-651.
|
[23] |
Dasgupta S, Bhattacharya-Chatterjee M, O'Malley BW Jr, et al. Inhibition of NK cell activity through TGF-beta1 by downregulation of NKG2D in a murine model of head and neck cancer [J]. J Immunol,2005,175(8):5541-5550.
|
[24] |
Costa NL, Valadares MC, Souza PP, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma[J]. Oral Oncol, 2013,49(3):216-223.
|
[25] |
Lee JJ, Chang YL, Lai WL, et al. Increased prevalence of interleukin-17-producing CD4+ tumor infiltrating lymphocytes in human oral squamous cell carcinoma [J]. Head Neck, 2011,33(9):1301-1308.
|
[26] |
Martinez GJ, Zhang Z, Reynolds JM, et al. Smad2 positively regulates the generation of Th17 cells [J]. J Biol Chem, 2010,285(38):29039-29043.
|
[27] |
Schwarz S, Butz M, Morsczeck C, et al. Increased number of CD25 FoxP3 regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double staining [J]. J Oral Pathol Med, 2008,37(8):485-489.
|
[28] |
Strauss L,Bergmann C,Gooding W, et al. The frequency and suppressor function of CD4 + CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck [J]. Clin Cancer Res, 2007,13(21):6301-6311.
|
[29] |
Costea DE, Hills A, Osman AH, et al. Identification of two distinctcarcinoma-associatedfibroblastsubtypeswith differential tumor-promoting abilities in oral squamous cell carcinoma [J]. Cancer Res, 2013,73(13):3888-3901.
|
[30] |
Lu SL, Herrington H, Reh D, et al. Loss of transforming growth factor-beta type Ⅱ receptor promotes metastatic headand-neck squamous cell carcinoma [J]. Genes Dev, 2006,20(10):1331-1342.
|
[31] |
Chu TH, Yang CC, Liu CJ, et al. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRⅡ[J]. Cancer Lett, 2013,337(1):115-124.
|
[32] |
Fukai Y, Fukuchi M, Masuda N, et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma[J]. Int J Cancer, 2003,104(2):161-166.
|
[33] |
Guasch G, Schober M, Pasolli HA, et al. Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia [J]. Cancer Cell, 2007,12(4):313-327.
|
[34] |
Kang SH, Bang YJ, Im YH, et al. Transcriptional repression of the transforming growth factor-beta type Ⅰreceptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer [J]. Oncogene, 1999,18(51):7280-7286.
|
[35] |
Chen T, Yan W, Wells RG, et al. Novel inactivating mutations of transforming growth factor-beta typeⅠreceptor gene in headand-neck cancer metastases [J]. Int J Cancer, 2001,93(5):653-661.
|
[36] |
Honjo Y, Bian Y, Kawakami K, et al. TGF-beta receptor Ⅰconditional knockout mice develop spontaneous squamous cell carcinoma [J]. Cell Cycle, 2007,6(11):1360-1366.
|
[37] |
Bian Y, Terse A, Du J, et al. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway[J]. Cancer Res, 2009,69(14):5918-5926.
|
[38] |
Iamaroon A, Pattamapun K, Piboonniyom SO. Aberrant expression of Smad4, a TGF-beta signaling molecule, in oral squamous cell carcinoma[J]. J Oral Sci, 2006,48(3):105-109.
|
[39] |
Takebayashi S, Ogawa T, Jung KY, et al. Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma[J]. Cancer Res, 2000,60(13):3397-3403.
|
[40] |
Xie W, Aisner S, Baredes S, et al. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck, 2013,35(1):76-85.
|
[41] |
Qiu W, Schönleben F, Li X, et al. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4 [J]. Cancer Lett, 2007,245(1):163-170.
|
[42] |
Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation [J]. J Clin Invest, 2009,119(11):3408-3419.
|
[43] |
Kutler DI, Auerbach AD, Satagopan J, et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia[J]. Arch Otolaryngol Head Neck Surg, 2003,129(1):106-112.
|
[44] |
Wreesmann VB, Estilo C, Eisele DW, et al. Downregulation of Fanconi anemia genes in sporadic head and neck squamous cell carcinoma [J]. ORL J Otorhinolaryn-gol Relat Spec, 2007,69(4):218-225.
|
[45] |
Berton TR,Matsumoto T,Page A,et al. Tumor formation in mice with condi-tional inactivation of Brca1 in epithelial tissues [J].Oncogene, 2003,22(35):5415-5426.
|
[46] |
Kitamura T, Kometani K, Hashida H, et al. SMAD4-deficient intestinal tumors recruit CCR1 + myeloid cells that promote invasion[J]. Nat Genet,2007,39(4):467-475.
|
[47] |
Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppres-sion of gastrointestinal cancer [J]. Nature,2006,441(7096):1015-1019.
|
[48] |
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head and neck cancer [J]. FEBS Lett, 2012,586(14):1984-1992.
|
[49] |
Li AG, Lu SL, Zhang MX, et al. Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis [J]. Cancer Res, 2004,64(21):7836-7845.
|
[50] |
Hoot KE, Lighthall J, Han G, et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression [J]. J Clin Invest,2008,118(8):2722-2732.
|
[51] |
Hoot KE, Oka M, Han G, et al. HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion [J]. J Clin Invest, 2010,120(10):3606-3616.
|