切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2012, Vol. 6 ›› Issue (01) : 1 -8. doi: 10.3877/cma.j.issn.1674-1366.2012.01.001

基础研究

8 mm 种植体骨内应力分布的三维有限元研究
康宁1, 宫苹1, 李娟娟1, 欧国敏1,()   
  1. 1.610041 成都,四川大学华西口腔医学院种植中心
  • 收稿日期:2011-10-10 出版日期:2012-02-01
  • 通信作者: 欧国敏
  • 基金资助:
    成都市科技攻关计划(06GGYB144GX-034)

The study of the stress distribution in bone around 8 mm-length dental implant by threedimensional finite element analysis

Ning KANG1, Ping GONG1, Juan-juan LI1, Guo-min OU1,()   

  1. 1.Department of Dental Implants, West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2011-10-10 Published:2012-02-01
  • Corresponding author: Guo-min OU
引用本文:

康宁, 宫苹, 李娟娟, 欧国敏. 8 mm 种植体骨内应力分布的三维有限元研究[J/OL]. 中华口腔医学研究杂志(电子版), 2012, 6(01): 1-8.

Ning KANG, Ping GONG, Juan-juan LI, Guo-min OU. The study of the stress distribution in bone around 8 mm-length dental implant by threedimensional finite element analysis[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2012, 6(01): 1-8.

目的

探讨在不同骨质条件中、达到骨整合时(40%的骨结合率),不同直径的8 mm 种植体骨界面应力分布的变化规律,为短种植体的临床应用提供一定的参考和实验依据。

方法

采用三维有限元方法分析6 种不同直径的8 mm 种植体在Ⅰ~Ⅳ类骨质条件中,受垂直和侧向力时,种植体骨界面的应力值大小及分布规律。

结果

在Ⅰ~Ⅳ类骨质中,无论垂直或是斜向加载,应力值随着种植体直径增加,呈现减小的趋势。 种植体直径3.3 ~5 mm 时,最大应力值大小变化较为明显(曲率约为-1);种植体直径5.5 ~7.1 mm 时,变化趋于平缓(曲率接近0)。 另一方面,随着骨质密度降低,种植体骨界面的最大应力逐渐增大:Ⅳ类>Ⅲ类>Ⅱ类>Ⅰ类。 在Ⅰ、Ⅱ类骨质中最大应力分布接近,Ⅲ、Ⅳ类骨质最大应力分布相近。

结论

在临床应用短种植体时,可尽量选择较粗直径的种植体(直径3.3 ~5 mm),但当种植体直径足够大时(直径大于5.5 mm),再增加种植体直径对临床效果的改善不明显;实验结果显示,Ⅲ、Ⅳ类骨质时的应力值远大于Ⅰ、Ⅱ类骨质,提示在临床实践中,可以将Ⅲ、Ⅳ类的骨质通过骨挤压、骨移植等方式来提高骨密度,以保证远期成功率。

Objective

To analyze the stress distribution on implant-bone interface, with varying diameter of 8-mm implant in different bone density (40% osseointegration) for the clinical application of short dental implant.

Methods

Three-dimensional finite element was used to simulate the stress of 8-mm implants with six different diameters in Ⅰ-Ⅳbone density, and a vertical loading and a 45 degree slope loading was applied in this study.

Results

Regardless of vertical loading or 45 degree slope loading, maximum Von-Mises stress decreased as the increase of diameter of dental implants in all four type of bone density. The maximum stress varied significantly when the diameter was bounded in 3.3 mm to 5 mm (slope was around-1), while when the diameter was within 5.5 mm to 7.1 mm, the variation was much more slight (slope was near 0). The maximum stress on implant-bone interface increased as the decrease of bone density, in summary, Ⅳ>Ⅲ>Ⅱ>Ⅰ. The maximum stress in Type Ⅰand Type Ⅱhad similar distribution and so as that of in Type Ⅲand Ⅳ.

Conclusions

The larger diameter implant (the diameter in 3.3 mm to 5 mm) would be recommended in order to get better clinical effects.However, when the diameter was above 5.5 mm, much better stress distribution would not be achieved by increasing implant diameter. The result also indicated that the stress was far greater in type Ⅲand type Ⅳbone quality than that of in type Ⅰand type Ⅱbone quality. To achieve better clinical outcome, bone condensing or bone transplantation before inserting the implant, by which bone density can be ascended, would be recommended.

表1 各植体节点数与单元数
表2 各植体相对应下颌骨节点数与单元数
图1 下颌骨与种植体的有限元模型
表3 实验有关材料的力学参数
图2 下颌骨边界约束图
图3 加载示意图
图4 垂直加载Von Mises 应力在Ⅰ~Ⅳ类骨质骨界面上的应力分布 A 为Ⅰ类骨质;B 为Ⅱ类骨质;C 为Ⅲ类骨质;D 为Ⅳ类骨质。 因本研究应力分布关注的重点在于种植体与骨的结合部分,因此在种植体应力分布图中,种植体只截取了植入部分,向上只保留了0.5 mm 的种植体高度
图5 不同加载条件下最大V-Mises 应力在四类骨质条件下的分布变化
1
Misch CE. Short dental implants: a literature review and rationale for use. Dent Today, 2005,24(8):64-66,68
2
Olate S, Lyrio MC, de Moraes M, et al. Influence of diameter and length of implant on early dental implant failure. J Oral Maxillofac Surg,2010,68(2):414-419
3
Sun HL, Huang C, Wu YR, et al. Failure rates of short(≤10 mm) dental implants and factors influencing their failure: a systematic review.Int J Oral Maxillofac Implants, 2011,26(4):816-825.
4
Fugazzotto PA. Shorter implants in clinical practice: rationale and treatment results. Int J Oral Maxillofac Implants, 2008,23(3):487-96.
5
Draenert FG, Sagheb K, Baumgardt K. Retrospective analysis of survival rates and marginal bone loss on short implants in the mandible.Clin Oral Implants Res, 2011 Sep 27. doi:10.1111/j.1600-0501.2011.02266.x.
6
吴茴,李健慧,邸萍,等. 口腔短种植体长期修复效果的评估. 中华口腔医学杂志, 2010,45(12):712-716.
7
O'Mahony AM, Williams JL, Speneer P. Anisotropie elastieity of cortical and cancellous bone in the posterior mandible increases periimplant stress and stain under obliqueloading. Clinieal Oral Implants Researeh, 2001,12(6):648-657.
8
Danza M, Quaranta A, Carinci F. Biomechanical evaluation of dental implants in D1 and D4 bone by Finite Element Analysis.Minerva Stomatol, 2010,59(6):305-313.
9
Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent, 1996,75(2):140-147.
10
Kitamura E, Stegaroiu R, Nomura S, et al. Influence of marginal bone resorption on stress around an implant—a three-dimensional finite element analysis. J Oral Rehabil, 2005,32(4):279-286.
11
Chen J, Esterle M, Roberts WE. Mechanical response to functional loading around the threads of retromolar endosseous implants utilized for orthodontic anchorage: coordinated histomorphometric and finite element analysis. Int J Oral Maxillofac Implants, 1999,14(2):282-289.
12
Sahin S, Akagawa Y, Wadamoto M. The three-dimensional bone interface of an osseointegrated implant. Ⅱ: A morphometric evaluation after three months of loading. J Prosthet Dent, 1996,76(2):176-180.
13
Barbier L, Schepers E. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants, 1997,12(2):215-223.
14
Block MS, Finger IM, Fontenot MG, et al. Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants, 1989,4(3):219-225.
15
Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech, 1993,26(2):111-119.
16
Ohashi T, Matsunaga S, Nakahara K, et al. Biomechanical role of peri-implant trabecular structures during vertical loading. Clin Oral Investig, 2010,14(5):507-513.
17
Akça K, Iplikçiogˇlu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants, 2001,16(5):722-730.
18
Kong L, Sun Y, Hu K, et al. Bivariate evaluation of cylinder implant diameter and length: a three-dimensional finite element analysis. J Prosthodont, 2008,17(4):286-293.
[1] 刀力, 何子华, 李湘霞, 张新平, 简裕涛, 赵克. 气孔缺陷对磨牙双层全瓷冠力学性能影响的有限元研究[J/OL]. 中华口腔医学研究杂志(电子版), 2016, 10(06): 389-394.
[2] 王飞宇, 薛俊杰, 王璟, 徐远志, 舒林径, 黄稔欢. 牙周膜减阻牵张移动上下颌尖牙的三维有限元分析[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(03): 186-190.
[3] 许琳, 朱文军, 程绍华, 邓旭亮, 赵克. 纤维桩对复合树脂修复根管治疗后磨牙影响的有限元研究[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(01): 18-22.
[4] 季彤, 铁英, 王冬梅, 张陈平. 下颌骨缺损腓骨移植重建的三维有限元应力分析[J/OL]. 中华口腔医学研究杂志(电子版), 2007, 01(02): 93-96.
[5] 秦家麟, 吴炯, 王振宜, 金磊. 有限元法在肛肠良性疾病中的研究进展及前景展望[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 341-346.
[6] 张学斌, 雷凯, 任荣, 李得春, 王小平, 白景棠, 齐园园, 王哲, 刘熹. 高海拔地区股骨颈骨折空心螺钉斜三角与倒三角构型的三维有限元对比研究[J/OL]. 中华老年骨科与康复电子杂志, 2022, 08(04): 205-210.
阅读次数
全文


摘要