切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) doi: 10.3877/cma.j.issn.1674-1366.2026.01.001

数智口腔专栏·专家论坛

口腔种植定量测量人工智能化的难点解析与解决策略
陈泽涛1,(), 邱龙诗语1, 龚卓弘2, 刘恒毅1, 曾培生1, 施梦汝1   
  1. 1中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
    2香港大学牙医学院修复齿科,中国香港 999077
  • 收稿日期:2025-12-20
  • 通信作者: 陈泽涛

Challenges and strategies for artificial intelligence-based quantitative measurement in oral implant

Zetao Chen1,(), Longshiyu Qiu1, Zhuohong Gong2, Hengyi Liu1, Peisheng Zeng1, Mengru Shi1   

  1. 1Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
    2Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
  • Received:2025-12-20
  • Corresponding author: Zetao Chen
  • Supported by:
    Medical Education Research Project of Medical Education Branch, Chinese Medical Association and National Center for Medical Education Development(2025A06); Higher Education Research Project of Guangdong Higher Education Association under the 14th Five-Year Plan(25GZD001); Science and Technology Program of Guangzhou(2023B03J1232)
引用本文:

陈泽涛, 邱龙诗语, 龚卓弘, 刘恒毅, 曾培生, 施梦汝. 口腔种植定量测量人工智能化的难点解析与解决策略[J/OL]. 中华口腔医学研究杂志(电子版), doi: 10.3877/cma.j.issn.1674-1366.2026.01.001.

Zetao Chen, Longshiyu Qiu, Zhuohong Gong, Hengyi Liu, Peisheng Zeng, Mengru Shi. Challenges and strategies for artificial intelligence-based quantitative measurement in oral implant[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), doi: 10.3877/cma.j.issn.1674-1366.2026.01.001.

数字化口腔种植技术的发展推动了精准化种植诊疗的进步,产生了大量与临床决策相关的定量指标。在数字化种植向智能化种植转型的过程中,软硬组织的精确定量是实现智能化种植的基础,人工智能技术在该领域展现出应用潜力。然而,口腔种植定量测量人工智能化在数据来源、任务特异性、算法设计及临床验证等方面仍存在诸多待解决问题。本文结合国内外研究现状及笔者团队对口腔种植定量测量智能化探索经验,首先阐明口腔种植定量任务的概念与特征,继而总结口腔种植人工智能定量测量的技术路径,分析现有难点与未来发展方向,以期为口腔种植定量测量人工智能化的建设提供参考。

The advancement of digital technologies in oral implantology has facilitated the progress of precise implant treatment, generating numerous quantitative indices relevant to clinical decision-making. In the transformation from digital implant to intelligent implant, accurate quantification of hard and soft tissues serves as the foundation for intelligent and precise implant therapy, and artificial intelligence (AI) has demonstrated potential applications in this field. However, the clinical translation of AI-based quantitative analysis in oral implantology remains constrained by challenges related to data acquisition, task specificity, algorithm design, and clinical validation. Drawing upon current evidence from domestic and international studies and our research findings in this area, this article elucidates the characteristics of quantitative tasks in oral implantology, summarizes the technical pathways for AI-based quantitative analysis, and discusses existing challenges and future directions, with the aim of providing a reference for the clinical development of intelligent quantitative analysis in oral implantology.

图1 口腔种植定量测量的总体概述
图2 口腔种植定量测量的任务特征
表1 口腔种植4类定量任务的特征比较
表2 口腔种植定量测量人工智能化的技术路径比较
[1]
Schwendicke FKrois J. Precision dentistry-what it is,where it fails (yet),and how to get there [J]. Clin Oral Investig202226(4):3395-403. DOI:10.1007/s00784-022-04420-1.
[2]
Mun SBYoo SRKim YJ,et al. AI-driven prediction of dental implant numbers to be placed for patient-specific treatment planning [J]. Int Dent J202575(6):103896. DOI:10.1016/j.identj.2025.103896.
[3]
Kurt Bayrakdar SOrhan KBayrakdar IS,et al. A deep learning approach for dental implant planning in cone-beam computed tomography images [J]. BMC Med Imaging202121(1):86. DOI:10.1186/s12880-021-00618-z.
[4]
Esteva ARobicquet ARamsundar B,et al. A guide to deep learning in healthcare [J]. Nat Med201925(1):24-29. DOI:10.1038/s41591-018-0316-z.
[5]
Lawand GGonzaga LIssa J,et al. Artificial intelligence segmentation errors in implant planning software programs:An overview[J]. Clin Implant Dent Relat Res202527(5):e70095. DOI:10.1111/cid.70095.
[6]
Alshenaiber RCowan CBarclay C,et al. Analysis of residual ridge morphology in a group of edentulous patients seeking NHS dental implant provision:A retrospective observational lateral cephalometric study [J]. Diagnostics (Basel)202111(12):2348. DOI:10.3390/diagnostics11122348.
[7]
Cawood JIHowell RA. A classification of the edentulous jaws [J]. Int J Oral Maxillofac Surg198817(4):232-236. DOI:10.1016/s0901-5027(88)80047-x.
[8]
Palomino-Zorrilla JJCórdova-Limaylla NERosas-Díaz JC,et al. Jawbone quality classification in dental implant planning and placement studies. A scoping review[J]. J Int Soc Prev Community Dent202414(2):89-97. DOI:10.4103/jispcd.JISPCD_4_22.
[9]
Troiano GRapani AFanelli F,et al. Inter and intra-operator reliability of Lekholm and Zarb classification and proposal of a novel radiomic data-driven clustering for qualitative assessment of edentulous alveolar ridges [J]. Clin Oral Implants Res202435(7):729-738. DOI:10.1111/clr.14271.
[10]
Goiato MCdos Santos DMSantiago JF Jr,et al. Longevity of dental implants in type Ⅳ bone:A systematic review [J]. Int J Oral Maxillofac Surg201443(9):1108-1116. DOI:10.1016/j.ijom.2014.02.016.
[11]
Carneiro ALEReis INRBitencourt FV,et al. Accuracy of linear measurements for implant planning based on low-dose cone beam CT protocols:A systematic review and Meta-analysis [J]. Dentomaxillofac Radiol202453(4):207-221. DOI:10.1093/dmfr/twae007.
[12]
Macrì MD'Albis VD'Albis G,et al. The role and applications of artificial intelligence in dental implant planning:A systematic review [J]. Bioengineering (Basel)202411(8):778. DOI:10.3390/bioengineering11080778.
[13]
Gong ZLi XShi M,et al. Measuring the binary thickness of buccal bone of anterior maxilla in low-resolution cone-beam computed tomography via a bilinear convolutional neural network [J]. Quant Imaging Med Surg202313(12):8053-8066. DOI:10.21037/qims-23-744.
[14]
Lin YShi MXiang D,et al. Construction of an end-to-end regression neural network for the determination of a quantitative index sagittal root inclination [J]. J Periodontol202293(12):1951-1960. DOI:10.1002/jper.21-0492.
[15]
Kim YHShin JYLee A,et al. Automated cortical thickness measurement of the mandibular condyle head on CBCT images using a deep learning method [J]. Sci Rep202111(1):14852. DOI:10.1038/s41598-021-94362-7.
[16]
Kim SHKim JYang S,et al. Automatic and quantitative measurement of alveolar bone level in OCT images using deep learning [J]. Biomed Opt Express202213(10):5468-5482. DOI:10.1364/boe.468212.
[17]
Liu HDuan JZeng P,et al. Intelligently quantifying the entire irregular dental structure [J]. J Dent Res2024103(4):378-387. DOI:10.1177/00220345241226871.
[18]
Ma JHe YLi F,et al. Segment anything in medical images [J]. Nat Commun202415(1):654. DOI:10.1038/s41467-024-44824-z.
[19]
Ayzenberg VSener SBNovick K,et al. Fast and robust visual object recognition in young children [J]. Sci Adv202511(27):eads6821. DOI:10.1126/sciadv.ads6821.
[20]
Petersen LBOlsen KRChristensen J,et al. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars [J]. Dentomaxillofac Radiol201443(6):20140001. DOI:10.1259/dmfr.20140001.
[21]
Kim YHLee CHan SS,et al. Quantitative analysis of metal artifact reduction using the auto-edge counting method in cone-beam computed tomography [J]. Sci Rep202010(1):8872. DOI:10.1038/s41598-020-65644-3.
[22]
Cheplygina Vde Bruijne MPluim JPW. Not-so-supervised:A survey of semi-supervised,multi-instance,and transfer learning in medical image analysis [J]. Med Image Anal201954:280-296. DOI:10.1016/j.media.2019.03.009.
[23]
Kim HECosa-Linan ASanthanam N,et al. Transfer learning for medical image classification:A literature review [J]. BMC Med Imaging202222(1):69. DOI:10.1186/s12880-022-00793-7.
[24]
Shi MGong ZZeng P,et al. Multi-quantifying maxillofacial traits via a demographic parity-based AI model [J]. BME Front20245:0054. DOI:10.34133/bmef.0054.
[25]
Park CSKang SRKim JE,et al. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning [J]. Sci Rep202313(1):11921. DOI:10.1038/s41598-023-38943-8.
[26]
Bardhan SNagar GAdapala K,et al. Validation of an AI model for automated detection of alveolar bone changes post-orthodontics using cone-beam computed tomography[J]. Cureus202517(10):e94809. DOI:10.7759/cureus.94809.
[27]
Çoban GÖztürk THashimli N,et al. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software [J]. Dental Press J Orthod202227(4):e222112. DOI:10.1590/2177-6709.27.4.e222112.oar.
[28]
Jeon SLee KC. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network [J]. Prog Orthod202122(1):14. DOI:10.1186/s40510-021-00358-4.
[29]
Cha JYYoon HIYeo IS,et al. Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs [J]. J Clin Med202110(5):1009. DOI:10.3390/jcm10051009.
[30]
Hao JNalley AYeung AWK,et al. Characteristics,licensing,and ethical considerations of openly accessible oral-maxillofacial imaging datasets:A systematic review [J]. NPJ Digit Med20258(1):412. DOI:10.1038/s41746-025-01818-5.
[31]
Vilcapoma PParra Meléndez DFernández A,et al. Comparison of Faster R-CNN,YOLO,and SSD for third molar angle detection in dental panoramic X-rays [J]. Sensors (Basel)202424(18):6053. DOI:10.3390/s24186053.
[32]
Widiasri MArifin AZSuciati N,et al. Dental-YOLO:Alveolar bone and mandibular canal detection on cone beam computed tomography images for dental implant planning[J]. IEEE Access202210:101483-101494. DOI:10.1109/ACCESS.2022.3208350.
[33]
Chen CCWu YFAung LM,et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence [J]. J Dent Sci202318(3):1301-1309. DOI:10.1016/j.jds.2023.03.020.
[34]
Nguyen KTLe BMLi M,et al. Localization of cementoenamel junction in intraoral ultrasonographs with machine learning [J]. J Dent2021112:103752. DOI:10.1016/j.jdent.2021.103752.
[35]
Liu TYe YLiu C,et al. Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network [J]. Biomedical Signal Processing and Control202385:105082. DOI:10.1016/j.bspc.2023.105082.
[36]
Kazerouni AAghdam EKHeidari M,et al. Diffusion models in medical imaging:A comprehensive survey [J]. Med Image Anal202388:102846. DOI:10.1016/j.media.2023.102846.
[37]
Te Lin YLi CKorostoff J,et al. Three-dimensional digital quantitative analysis of periodontal and peri-implant phenotype:A narrative review [J]. Periodontol 20002025. DOI:10.1111/prd.12639.
[38]
Yang LZhu ZLi Y,et al. Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT[J]. Front Dent Med20256:1635155. DOI:10.3389/fdmed.2025.1635155.
[39]
Chen YCChen LLai YL,et al. AI-driven detection and measurement of keratinized gingiva in dental photographs:Validation using reference retainers [J]. J Clin Periodontol202552(7):1056-1067. DOI:10.1111/jcpe.14164.
[1] 潘芮, 李守强, 陈双, 付昕, 王卓, 冷晓萍. 应用RVP技术定量评估H型高血压患者颈动脉斑块特征及其与缺血性脑卒中风险的相关性[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 824-831.
[2] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[3] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[4] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[5] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[6] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[7] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[8] 尹晓南, 蔡兆伦, 沈朝勇, 张波, 尹源, 刘曦娇. 能谱CT在胃肠间质瘤中的应用进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 402-408.
[9] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[10] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[11] 嵇振岭. 疝与腹壁外科补片研发国外进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 614-622.
[12] 刘宝德, 郑娉娉, 肖宇翔, 沈凌, 王柳盛, 张维. 肺泡灌洗液中炎症因子对重症肺炎患者痰栓风险的预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 917-922.
[13] 江学良. 人工智能在炎症性肠病诊疗中的研究进展与应用展望[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 680-680.
[14] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
[15] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?