切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 12 -21. doi: 10.3877/cma.j.issn.1674-1366.2024.01.003

论著

人牙源干细胞数据独立采集蛋白质组学方法的建立
刘雨晴, 顾永春, 孟凡文, 张素萍()   
  1. 苏州大学唐仲英医学研究院,苏州 215124
    苏州大学附属第九医院口腔科,苏州 215200
    苏州口腔医院,苏州 215005
    苏州大学唐仲英医学研究院,苏州 215124;苏州市疾病预防控制中心,苏州 215004
  • 收稿日期:2023-06-28 出版日期:2024-02-01
  • 通信作者: 张素萍

Establishment of data independent acquisition quantification proteomic method in dental stem cells

Yuqing Liu, Yongchun Gu, Fanwen Meng, Suping Zhang()   

  1. Cyrus Tang Medical Institute, Soochow University, Suzhou 215124, China
    Suzhou Ninth Hospital Affiliated with Soochow University, Suzhou 215200, China
    Suzhou Stomatological Hospital, Suzhou 215005, China
    Cyrus Tang Medical Institute, Soochow University, Suzhou 215124, China; Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
  • Received:2023-06-28 Published:2024-02-01
  • Corresponding author: Suping Zhang
  • Supported by:
    Suzhou Gusu Health Talent Project(SYSD2019067)
引用本文:

刘雨晴, 顾永春, 孟凡文, 张素萍. 人牙源干细胞数据独立采集蛋白质组学方法的建立[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 12-21.

Yuqing Liu, Yongchun Gu, Fanwen Meng, Suping Zhang. Establishment of data independent acquisition quantification proteomic method in dental stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(01): 12-21.

目的

探讨人牙源性干细胞(DSC)的数据独立采集(DIA)蛋白质组学的建立方法。

方法

2021年8月至2022年9月于苏州口腔医院收集牙齿,培养来自不同个体的牙髓干细胞(DPSC)、牙龈间充质干细胞(GMSC)、牙周膜干细胞(PDLSC)、根尖乳头干细胞(SCAP)和人脱落乳牙来源的干细胞(SHED),每种细胞各3个样本,共计15个样本进行DIA蛋白组学测序。通过唯一肽段分布和蛋白质覆盖分布、蛋白质质量分布评估蛋白质鉴定结果,通过组内变异系数(CV)、主成分分析及样本定量相关性等方面来评估DIA数据的质量。

结果

从细胞中提取的蛋白质样本合格,总样本中共鉴定出8 662个蛋白质。蛋白质鉴定的基本统计表明所鉴定的蛋白质是可靠的。差异蛋白分析显示,DSPC组与其他各组(GMSC、PDLSC、SCAP和SHED)比较,上调和下调的蛋白分别为125、168、100、102和106、107、94、107个。差异蛋白的热图显示,同DPSC比较,GMSC、PDLSC、SCAP和SHED均有不同高表达的蛋白图谱。京都基因和基因组百科全书数据库(KEGG)分析表明不同DSC的蛋白质富集在不同的信号通路。

结论

本研究成功建立了不同DSC的DIA蛋白质组学分析方法,为后续研究奠定了基础。

Objectives

To establish the data independent acquisition (DIA) proteomic method for dental stem cells.

Methods

Dental pulp stem cells (DPSC), mesenchymal stem cells derived from gingiva (GMSC), periodontal ligament stem cells (PDLSC), stem cells from apical papilla (SCAP), and stem cells from human exfoliated deciduous teeth (SHED) from different individuals were collected from August 2021 to September 2022 in Suzhou Stomatological Hospital. A total of 15 samples with 3 in each type were used for the DIA detection and analysis. The results of protein identification were evaluated by unique peptide distribution, protein coverage distribution, and protein mass distribution. Intra-group coefficient of variation (CV), principal component analysis (PCA), and Pearson correlation coefficient of all protein expressions were used to evaluate DIA data quality.

Results

The results showed that the protein samples extracted from cells were qualified for DIA LC-MS analysis, and 8 662 proteins were identified in the total samples. The differential protein analysis showed that the upregulated and downregulated proteins between the DSPC group and other groups (DPSC vs GMSC, DPSC vs PDLSC, DPSC vs SCAP, and DPSC vs SHED) were 125, 168, 100, 102 and 106, 107, 94, 107, respectively. Heatmap of the differential proteins indicated that the other four dental stem cells had different protein profiles that were highly expressed compared to DPSC. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that proteins from different dental stem cells were enriched in different signaling pathways.

Conclusions

We successfully established the DIA proteomics analysis method of different dental stem cells, which laid the foundation for future research.

图1 实验步骤与数据独立采集(DIA)工作流程 A:从细胞样本到蛋白质和DIA的实验程序示意图;B:DIA工作流程的卡通展示图;C:DIA数据分析的过程和内容示意图。LC-MS/MS:高效液相色谱串联质谱联用技术;DDA:数据依赖性采集;DIA:数据独立采集;GO:基因本体;COG/KOG:蛋白相邻类的聚簇/真核生物蛋白相邻类的聚簇。
图2 牙源性干细胞的蛋白质浓度及SDS-PAGE染色结果 A:5种牙源性干细胞(DSC)的蛋白质浓度,以Mean ± SEM表示(n = 3);B:SDS-PAGE检测15个DSC的考马斯亮蓝染色结果。DPSC:牙髓干细胞;GMSC:牙龈间充质干细胞;PDLSC:牙周膜干细胞;SHED:人脱落乳牙来源的干细胞;SCAP:根尖乳头干细胞。
图3 蛋白质的质谱鉴定结果 A:质谱鉴定得到的5种牙源性干细胞(DSC)的肽段和蛋白质数量;B:唯一肽段分布;C:蛋白质质量分布;D:蛋白质覆盖度分布。DPSC:牙髓干细胞;GMSC:牙龈间充质干细胞;PDLSC:牙周膜干细胞;SHED:人脱落乳牙来源的干细胞;SCAP:根尖乳头干细胞。
图4 蛋白质组学样品质控 A:组内变异系数(CV)分布;B:样品相关性分析热图,计算每两个样本间所有蛋白质表达量的Pearson相关系数,以说明样本间蛋白质定量的相关性,X、Y轴均代表样本,颜色代表相关系数(颜色越深代表相关性越高;较浅的颜色表示相关性较低);C:主成分分析,X轴是第一个主成分,Y轴是第二个主成分。DPSC:牙髓干细胞;GMSC:牙龈干细胞;PDLSC:牙周膜干细胞;SCAP:根尖乳头干细胞;SHED:脱落乳牙来源的牙髓干细胞。
图5 差异蛋白与火山图 A:牙髓干细胞(DPSC)组与其他各组差异表达蛋白的直方图;B:DPSC与牙龈间充质干细胞(GMSC)差异蛋白的火山分布图,红点表示显著上调的蛋白质,绿点表示显著下调的蛋白质,灰点表示未发生显著变化的蛋白质。PDLSC:牙周膜干细胞;SCAP:根尖乳头干细胞;SHED:脱落乳牙来源的牙髓干细胞。
图6 差异蛋白的聚类分析图 5种牙源性干细胞差异蛋白表达聚类分析采用行缩放法绘制热图。红色为高表达蛋白质,蓝色为低表达蛋白质,白色为中等表达蛋白质。DPSC:牙髓干细胞;PDLSC:牙周膜干细胞;GMSC:牙龈干细胞;SCAP:根尖乳头干细胞;SHED:脱落乳牙来源的牙髓干细胞。
图7 4种比较组的韦恩图 DPSC:牙髓干细胞;PDLSC:牙周膜干细胞;GMSC:牙龈干细胞;SCAP:根尖乳头干细胞;SHED:脱落乳牙来源的牙髓干细胞。图8 4种牙源性干细胞(DSC)相比牙髓干细胞(DPSC)的差异蛋白京都基因与基因组百科全书(KEGG)富集图 A:牙龈间充质干细胞(GMSC)特异性蛋白质的KEGG富集分析;B:牙周膜干细胞(PDLSC)特异性蛋白质的KEGG富集分析;C:根尖乳头干细胞(SCAP)特异性蛋白质的KEGG富集分析;D:人脱落乳牙来源的干细胞(SHED)特异性蛋白质的KEGG富集分析;E:4个比较组共同表达蛋白质的KEGG富集图;A1:Glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate;A2:Glycosylphosphatidylinositol(GPI)-anchor biosynthesis;A3:Glycosphingolipid biosynthesis-lacto and neolacto series;A4:Viral protein interaction with cytokine and cytokine receptor。
[1]
Sui BWu DXiang L,et al. Dental pulp stem cells:From discovery to clinical application[J]. J Endod202046(9S):S46-S55. DOI:10.1016/j.joen.2020.06.027.
[2]
Gronthos SMankani MBrahim J,et al. Postnatal human dental pulp stem cells(DPSCs)in vitro and in vivo[J]. Proc Natl Acad Sci U S A200097(25):13625-13630. DOI:10.1073/pnas.240309797.
[3]
Miura MGronthos SZhao M,et al. SHED:Stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A2003100(10):5807-5812. DOI:10.1073/pnas.0937635100.
[4]
Sonoyama WLiu YFang D,et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One20061(1):e79. DOI:10.1371/journal.pone.0000079.
[5]
Seo BMMiura MGronthos S,et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet2004364(9429):149-155. DOI:10.1016/S0140-6736(04)16627-0.
[6]
Ge SMrozik KMMenicanin D,et al. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue:Potential use for clinical therapy[J]. Regen Med20127(6):819-832. DOI:10.2217/rme.12.61.
[7]
Morsczeck CGötz WSchierholz J,et al. Isolation of precursor cells(PCs)from human dental follicle of wisdom teeth[J]. Matrix Biol200524(2):155-165. DOI:10.1016/j.matbio.2004.12.004.
[8]
Mason STarle SAOsibin W,et al. Standardization and safety of alveolar bone-derived stem cell isolation[J]. J Dent Res201493(1):55-61. DOI:10.1177/0022034513510530.
[9]
Güven EPYalvaç MEKayahan MB,et al. Human tooth germ stem cell response to calcium-silicate based endodontic cements[J]. J Appl Oral Sci201321(4):351-357. DOI:10.1590/1678-775720130047.
[10]
Li JTian WSong J. Proteomics applications in dental derived stem cells[J]. J Cell Physiol2017232(7):1602-1610. DOI:10.1002/jcp.25667.
[11]
Picotti PAebersold R. Selected reaction monitoring-based proteomics:Workflows,potential,pitfalls and future directions[J]. Nat Methods20129(6):555-566. DOI:10.1038/nmeth.2015.
[12]
Choi MChang CYClough T,et al. MSstats:An R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments[J]. Bioinformatics201430(17):2524-2526. DOI:10.1093/bioinformatics/btu305.
[13]
Reichenberg ERedlich MCancemi P,et al. Proteomic analysis of protein components in periodontal ligament fibroblasts[J]. J Periodontol200576(10):1645-1653. DOI:10.1902/jop.2005.76.10.1645.
[14]
Pivoriuūnas ASurovas ABorutinskaite V,et al. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth[J]. Stem Cells Dev201019(7):1081-1093. DOI:10.1089/scd.2009.0315.
[15]
Lei TWang JLiu Y,et al. Proteomic profile of human stem cells from dental pulp and periodontal ligament[J]. J Proteomics2021245:104280. DOI:10.1016/j.jprot.2021.104280.
[16]
Li JLi HTian Y,et al. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells[J]. Exp Cell Res2016345(1):6-16. DOI:10.1016/j.yexcr.2015.12.011.
[17]
Dou LYan QLiang P,et al. iTRAQ-based proteomic analysis exploring the influence of hypoxia on the proteome of dental pulp stem cells under 3D culture[J]. Proteomics201818(3-4):1700215. DOI:10.1002/pmic.201700215.
[18]
Yu SZhao YMa Y,et al. Profiling the secretome of human stem cells from dental apical papilla[J]. Stem Cells Dev201625(6):499-508. DOI:10.1089/scd.2015.0298.
[19]
Kotova AVLobov AADombrovskaya JA,et al. Comparative analysis of dental pulp and periodontal stem cells:Differences in morphology,functionality,osteogenic differentiation and proteome[J]. Biomedicines20219(11):1606-1632. DOI:10.3390/biomedicines9111606.
[20]
Lei TZhang XChen P,et al. Proteomic profile of human dental follicle stem cells and apical papilla stem cells[J]. J Proteomics2021231(1):103928. DOI:10.1016/j.jprot.2020.103928.
[21]
Kelly BPearce EL. Amino assets:How amino acids support immunity[J]. Cell Metab202032(2):154-175. DOI:10.1016/j.cmet.2020.06.010.
[22]
Linju MCRekha MR. Proline conjugated chitosan as wound healing material:In vitro studies on the influence of the scaffold on collagen production and wound healing[J]. Int J Biol Macromol2023242(7):124688. DOI:10.1016/j.ijbiomac.2023.124688.
[23]
Sun QNakata HYamamoto M,et al. Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis[J]. J Cell Mol Med201923(11):7592-7601. DOI:10.1111/jcmm.14632.
[24]
Zheng ZTang SYang T,et al. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine[J]. Hum Cell202335(6):1620-1637. DOI:10.1007/s13577-023-00943-1.
[25]
Wang XZhao SLai J,et al. Anti-inflammatory,antioxidant,and antifibrotic effects of gingival-derived MSCs on bleomycin-induced pulmonary fibrosis in mice[J]. Int J Mol Sci202223(1):99. DOI:10.3390/ijms23010099.
[26]
Shafiee ACavalcanti ASSaidy NT,et al. Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy[J]. Biomaterials2021268(1):120558. DOI:10.1016/j.biomaterials.2020.120558.
[27]
Nakao YFukuda TZhang Q,et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater2021122(5):306-324. DOI:10.1016/j.actbio.2020.12.046.
[28]
Ralph DNitschke YLevine MA,et al. ENPP1 variants in patients with GACI and PXE expand the clinical and genetic heterogeneity of heritable disorders of ectopic calcification[J]. PLoS Genet202218(4):e1010192. DOI:10.1371/journal.pgen.1010192.
[29]
Ralph DLevine MARichard G,et al. Mutation update:Variants of the ENPP1 gene in pathologic calcification,hypophosphatemic rickets,and cutaneous hypopigmentation with punctate keratoderma[J]. Hum Mutat202243(9):1183-1200. DOI:10.1002/humu.24391.
[30]
Qu GLi YChen L,et al. Comparison of osteogenic differentiation potential of human dental-derived stem cells isolated from dental pulp,periodontal ligament,dental follicle,and alveolar bone[J]. Stem Cells Int202111(4):6631905. DOI:10.1155/2021/6631905.
[31]
Pizzicannella JGugliandolo AOrsini T,et al. Erratum:Addendum:Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration[J]. Front Physiol202314(3):1148929. DOI:10.3389/fphys.2023.1148929.
[32]
Sen AStark H. Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis[J]. World J Gastroenterol201925(23):2846-2862. DOI:10.3748/wjg.v25.i23.2846.
[33]
Ishkitiev NYaegaki KImai T,et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium[J]. J Endod201238(4):475-480. DOI:10.1016/j.joen.2011.12.011.
[34]
Yuniartha RYamaza TSonoda S,et al. Cholangiogenic potential of human deciduous pulp stem cell-converted hepatocyte-like cells[J]. Stem Cell Res Ther202112(1):57. DOI:10.1186/s13287-020-02113-8.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[6] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 刘远, 张马莉, 高鹏, 曾塬杰, 王靖. 肩峰下滑囊在肩袖损伤修复中的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(04): 377-381.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要