切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 218 -227. doi: 10.3877/cma.j.issn.1674-1366.2023.03.010

综述

基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展
罗皓天1, 陈丹莹1, 王伟财1, 周晨1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2022-11-27 出版日期:2023-02-21
  • 通信作者: 周晨

Research progress of stromal cell derived factor-1/CXC-chemokine receptor 4 axis in bone-immune related diseases

Haotian Luo1, Danying Chen1, Weicai Wang1, Chen Zhou1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-11-27 Published:2023-02-21
  • Corresponding author: Chen Zhou
  • Supported by:
    National Natural Science Foundation of China(82001005, 82201095); Basic and Applied Basic Research Foundation of Guangdong Province(2021A1515110303); Science and Technology Planning Project of Guangzhou(202102021198)
引用本文:

罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.

Haotian Luo, Danying Chen, Weicai Wang, Chen Zhou. Research progress of stromal cell derived factor-1/CXC-chemokine receptor 4 axis in bone-immune related diseases[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(03): 218-227.

骨免疫学是一个将骨生物学和免疫学领域结合起来的跨学科领域,近年来受到了学者的关注和深入探索。基质细胞衍生因子1(SDF-1)是一种趋化因子,影响各种生理途径。CXC趋化因子受体4(CXCR4)在各系统的细胞中广泛表达,参与机体生理及病理过程。在骨免疫疾病中,CXCR4与SDF-1结合并激活下游信号通路,在血管生成、免疫反应、骨吸收与骨生成中发挥着重要的作用。本文拟阐述目前SDF-1/CXCR4轴在骨免疫系统中的作用与机制,及其在骨免疫相关疾病中的研究进展,并探讨其在未来的发展前景。

Osteoimmunology is an interdisciplinarity which combines the fields of bone biology and immunology, and has been paid close attention to and deeply explored by scholars in recent years. Stromal cell derived factor-1 (SDF-1) is a chemokine that affects various physiological pathways. CXC-chemokine receptor 4 (CXCR4) is widely expressed in cells of various systems and participates in physiological and pathological processes. In bone-immune diseases, CXCR4 binds to SDF-1 and subsequently activates downstream signaling pathways, which plays an important role in angiogenesis, immune response, bone resorption and bone formation. In this review, the functions and mechanisms of SDF-1/CXCR4 axis in bone-immune system, its research progress in bone-immune related diseases as well as its prospect in the future were discussed.

[1]
Khan P, Fatima M, Khan MA,et al. Emerging role of chemokines in small cell lung cancer:Road signs for metastasis,heterogeneity,and immune response[J]. Semin Cancer Biol2022,87:117-126. DOI:10.1016/j.semcancer.2022.11.005.
[2]
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol2017,17(9):559-572. DOI:10.1038/nri.2017.49.
[3]
Ratajczak MZ, Zuba-Surma E, Kucia M,et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis,regeneration and tumorigenesis[J]. Leukemia2006,20(11):1915-1924. DOI:10.1038/sj.leu.2404357.
[4]
Broussas M, Boute N, Akla B,et al. A new anti-CXCR4 antibody that blocks the CXCR4/SDF-1 axis and mobilizes effector cells[J]. Mol Cancer Ther2016,15(8):1890-1899. DOI:10.1158/1535-7163.MCT-16-0041.
[5]
Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development[J]. Mol Biol Rep2022,49(4):3307-3320. DOI:10.1007/s11033-021-07069-3.
[6]
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett2020,217:91-115. DOI:10.1016/j.imlet.2019.11.007.
[7]
Altschul SF, Madden TL, Schäffer AA,et al. Gapped BLAST and PSI-BLAST:A new generation of protein database search programs[J]. Nucleic Acids Res1997,25(17):3389-3402. DOI:10.1093/nar/25.17.3389.
[8]
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12[J]. Cytokine Growth Factor Rev2018,44:51-68. DOI:10.1016/j.cytogfr.2018.10.004.
[9]
Gros J, Manceau M, Thomé V,et al. A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature2005,435(7044):954-958. DOI:10.1038/nature03572.
[10]
Kim M, Kim DI, Kim EK,et al. CXCR4 overexpression in human adipose tissue-derived stem cells improves homing and engraftment in an animal limb ischemia model[J]. Cell Transplantation2017,26(2):191-204. DOI:10.3727/096368916X692708.
[11]
Cui L, Qu H, Xiao T,et al. Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia[J]. Restor Neurol Neurosci2013,31(3):239-251. DOI:10.3233/RNN-120271.
[12]
Petri RM, Hackel A, Hahnel K,et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function[J]. Stem Cell Reports2017,9(3):985-998. DOI:10.1016/j.stemcr.2017.06.020.
[13]
Ullah TR. The role of CXCR4 in multiple myeloma:Cells′journey from bone marrow to beyond[J]. J Bone Oncol2019,17:100253. DOI:10.1016/j.jbo.2019.100253.
[14]
Li JH, Hamdan FF, Kim SK,et al. Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy[J]. Biochemistry2008,47(9):2776-2788. DOI:10.1021/bi7019113.
[15]
Busillo JM, Benovic JL. Regulation of CXCR4 signaling[J]. Biochim Biophys Acta2007,1768(4):952-963. DOI:10.1016/j.bbamem.2006.11.002.
[16]
Singh P, Mohammad KS, Pelus LM. CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation[J]. Stem Cells2020,38(7):849-859. DOI:10.1002/stem.3174.
[17]
García-Cuesta EM, Santiago CA, Vallejo-Díaz J,et al. The role of the CXCL12/CXCR4/ACKR3 axis in autoimmune diseases[J]. Front Endocrinol(Lausanne)2019,10:585. DOI:10.3389/fendo.2019.00585.
[18]
Merino JJ, Bellver-Landete V, Oset-Gasque MJ,et al. CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration:Focus in CNS repair[J]. J Cell Physiol2015,230(1):27-42. DOI:10.1002/jcp.24695.
[19]
Décaillot FM, Kazmi MA, Lin Y,et al. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration[J]. J Biol Chem2011,286(37):32188-32197. DOI:10.1074/jbc.M111.277038.
[20]
Yamaguchi J, Kusano KF, Masuo O,et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation2003,107(9):1322-1328. DOI:10.1161/01.cir.0000055313.77510.22.
[21]
Horton JE, Raisz LG, Simmons HA,et al. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes[J]. Science1972,177(4051):793-795. DOI:10.1126/science.177.4051.793.
[22]
Arron JR, Choi Y. Bone versus immune system[J]. Nature2000,408(6812):535-536. DOI:10.1038/35046196.
[23]
Takayanagi H, Ogasawara K, Hida S,et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J]. Nature2000,408(6812):600-605. DOI:10.1038/35046102.
[24]
Okamoto K, Nakashima T, Shinohara M,et al. Osteoimmunology:The conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev2017,97(4):1295-1349. DOI:10.1152/physrev.00036.2016.
[25]
Tsukasaki M, Takayanagi H. Osteoimmunology:Evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol2019,19(10):626-642. DOI:10.1038/s41577-019-0178-8.
[26]
Takayanagi H. Osteoimmunology as an intrinsic part of immunology[J]. Int Immunol2021,33(12):673-678. DOI:10.1093/intimm/dxab057.
[27]
Greenbaum A, Hsu YMS, Day RB,et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J]. Nature2013,495(7440):227-230. DOI:10.1038/nature11926.
[28]
Yu VWC, Saez B, Cook C,et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow[J]. J Exp Med2015,212(5):759-774. DOI:10.1084/jem.20141843.
[29]
Mansour A, Abou-Ezzi G, Sitnicka E,et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow[J]. J Exp Med2012,209(3):537-549. DOI:10.1084/jem.20110994.
[30]
Teufel S, Grötsch B, Luther J,et al. Inhibition of bone remodeling in young mice by bisphosphonate displaces the plasma cell niche into the spleen[J]. J Immunol2014,193(1):223-233. DOI:10.4049/jimmunol.1302713.
[31]
Charles JF, Hsu LY, Niemi EC,et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function[J]. J Clin Invest2012,122(12):4592-4605. DOI:10.1172/JCI60920.
[32]
Sato M, Asada N, Kawano Y,et al. Osteocytes regulate primary lymphoid organs and fat metabolism[J]. Cell Metab2013,18(5):749-758. DOI:10.1016/j.cmet.2013.09.014.
[33]
Dar HY, Azam Z, Anupam R,et al. Osteoimmunology:The Nexus between bone and immune system[J]. Front Biosci (Landmark Ed)2018,23(3):464-492. DOI:10.2741/4600.
[34]
Weitzmann MN, Ofotokun I. Physiological and pathophysiological bone turnover-role of the immune system[J]. Nat Rev Endocrinol2016,12(9):518-532. DOI:10.1038/nrendo.2016.91.
[35]
Guder C, Gravius S, Burger C,et al. Osteoimmunology:A current update of the interplay between bone and the immune system[J]. Front Immunol2020,11:58. DOI:10.3389/fimmu.2020.00058.
[36]
Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis[J]. Nat Rev Rheumatol2018,14(11):631-640. DOI:10.1038/s41584-018-0091-8.
[37]
Huang Y, Tian C, Li Q,et al. TET1 knockdown inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 macrophage polarization through the NF-κB pathway in THP-1 cells[J]. Int J Mol Sci2019,20(8):E2023. DOI:10.3390/ijms20082023.
[38]
Yu M, D′Amelio P, Tyagi AM,et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice[J]. EMBO Rep2018,19(1):156-171. DOI:10.15252/embr.201744421.
[39]
Viniegra A, Goldberg H, Çil Ç,et al. Resolving macrophages counter osteolysis by anabolic actions on bone cells[J]. J Dent Res2018,97(10):1160-1169. DOI:10.1177/0022034518777973.
[40]
Ara T, Tokoyoda K, Sugiyama T,et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny[J]. Immunity2003,19(2):257-267. DOI:10.1016/s1074-7613(03)00201-2.
[41]
Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning[J]. Cardiovasc Res2012,94(3):400-407. DOI:10.1093/cvr/cvs132.
[42]
Petit I, Szyper-Kravitz M, Nagler A,et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4[J]. Nat Immunol2002,3(7):687-694. DOI:10.1038/ni813.
[43]
Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration:Adult,embryonic,and induced pluripotent stem cells[J]. Circulation2010,122(5):517-526. DOI:10.1161/CIRCULATIONAHA.109.881441.
[44]
Ko IK, Lee SJ, Atala A,et al. In situ tissue regeneration through host stem cell recruitment[J]. Exp Mol Med2013,45:e57. DOI:10.1038/emm.2013.118.
[45]
Ganju RK, Brubaker SA, Meyer J,et al. The alpha-chemokine,stromal cell-derived factor-1alpha,binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways[J]. J Biol Chem1998,273(36):23169-23175. DOI:10.1074/jbc.273.36.23169.
[46]
Teicher BA, Fricker SP. CXCL12(SDF-1)/CXCR4 pathway in cancer[J]. Clin Cancer Res2010,16(11):2927-2931. DOI:10.1158/1078-0432.CCR-09-2329.
[47]
Trautmann F, Cojoc M, Kurth I,et al. CXCR4 as biomarker for radioresistant cancer stem cells[J]. Int J Radiat Biol2014,90(8):687-699. DOI:10.3109/09553002.2014.906766.
[48]
Penn MS. Importance of the SDF-1:CXCR4 axis in myocardial repair[J]. Circ Res2009,104(10):1133-1135. DOI:10.1161/CIRCRESAHA.109.198929.
[49]
Fadini GP, Ferraro F, Quaini F,et al. Concise review:Diabetes,the bone marrow niche,and impaired vascular regeneration[J]. Stem Cells Transl Med2014,3(8):949-957. DOI:10.5966/sctm.2014-0052.
[50]
Wei JN, Cai F, Wang F,et al. Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs[J]. DNA Cell Biol2016,35(5):241-248. DOI:10.1089/dna.2015.3118.
[51]
Liekens S, Schols D, Hatse S. CXCL12-CXCR4 axis in angiogenesis,metastasis and stem cell mobilization[J]. Curr Pharm Des2010,16(35):3903-3920. DOI:10.2174/138161210794455003.
[52]
Mirshahi F, Pourtau J, Li H,et al. SDF-1 activity on microvascular endothelial cells:Consequences on angiogenesis in in vitro and in vivo models[J]. Thromb Res2000,99(6):587-594. DOI:10.1016/S0049-3848(00)00292-9.
[53]
Kijowski J, Baj-Krzyworzeka M, Majka M,et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells[J]. Stem Cells2001,19(5):453-466. DOI:10.1634/stemcells.19-5-453.
[54]
Molino M, Woolkalis MJ, Prevost N,et al. CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2[J]. Biochim Biophys Acta2000,1500(2):227-240. DOI:10.1016/s0925-4439(99)00110-6.
[55]
Döring Y, Pawig L, Weber C,et al. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease[J]. Front Physiol2014,5:212. DOI:10.3389/fphys.2014.00212.
[56]
Jin F, Brockmeier U, Otterbach F,et al. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model:Hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation[J]. Mol Cancer Res2012,10(8):1021-1031. DOI:10.1158/1541-7786.MCR-11-0498.
[57]
Wagner NM, Bierhansl L, Nöldge-Schomburg G,et al. Toll-like receptor 2-blocking antibodies promote angiogenesis and induce ERK1/2 and AKT signaling via CXCR4 in endothelial cells[J]. Arterioscler Thromb Vasc Biol2013,33(8):1943-1951. DOI:10.1161/ATVBAHA.113.301783.
[58]
Salvucci O, Basik M, Yao L,et al. Evidence for the involvement of SDF-1 and CXCR4 in the disruption of endothelial cell-branching morphogenesis and angiogenesis by TNF-alpha and IFN-gamma[J]. J Leukoc Biol2004,76(1):217-226. DOI:10.1189/jlb.1203609.
[59]
Moser B, Loetscher P. Lymphocyte traffic control by chemokines[J]. Nat Immunol2001,2(2):123-128. DOI:10.1038/84219.
[60]
Pozzobon T, Goldoni G, Viola A,et al. CXCR4 signaling in health and disease[J]. Immunol Lett2016,177:6-15. DOI:10.1016/j.imlet.2016.06.006.
[61]
Payne D, Drinkwater S, Baretto R,et al. Expression of chemokine receptors CXCR4,CXCR5 and CCR7 on B and T lymphocytes from patients with primary antibody deficiency[J]. Clin Exp Immunol2009,156(2):254-262. DOI:10.1111/j.1365-2249.2009.03889.x.
[62]
Nauseef WM, Borregaard N. Neutrophils at work[J]. Nat Immunol2014,15(7):602-611. DOI:10.1038/ni.2921.
[63]
Uhl B, Vadlau Y, Zuchtriegel G,et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response[J]. Blood2016,128(19):2327-2337. DOI:10.1182/blood-2016-05-718999.
[64]
Hampton HR, Bailey J, Tomura M,et al. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes[J]. Nat Commun2015,6:7139. DOI:10.1038/ncomms8139.
[65]
Martin C, Burdon PCE, Bridger G,et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence[J]. Immunity2003,19(4):583-593. DOI:10.1016/s1074-7613(03)00263-2.
[66]
Leung TH, Snyder ER, Liu Y,et al. A cellular,molecular,and pharmacological basis for appendage regeneration in mice[J]. Genes Dev2015,29(20):2097-2107. DOI:10.1101/gad.267724.115.
[67]
Chen H, Li G, Liu Y,et al. Pleiotropic roles of CXCR4 in wound repair and regeneration[J]. Front Immunol2021,12:668758. DOI:10.3389/fimmu.2021.668758.
[68]
Gómez-Barrena E, Rosset P, Gebhard F,et al. Feasibility and safety of treating non-unions in tibia,femur and humerus with autologous,expanded,bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric,non-comparative trial[J]. Biomaterials2019,196:100-108. DOI:10.1016/j.biomaterials.2018.03.033.
[69]
García-García A, de Castillejo CLF, Méndez-Ferrer S. BMSCs and hematopoiesis[J]. Immunol Lett2015,168(2):129-135. DOI:10.1016/j.imlet.2015.06.020.
[70]
Hutchings G, Moncrieff L, Dompe C,et al. Bone regeneration,reconstruction and use of osteogenic cells;from basic knowledge,animal models to clinical trials[J]. J Clin Med2020,9(1):E139. DOI:10.3390/jcm9010139.
[71]
Chen L, Li Y, Chen W,et al. Enhanced recruitment and hematopoietic reconstitution of bone marrow-derived mesenchymal stem cells in bone marrow failure by the SDF-1/CXCR4[J]. J Tissue Eng Regen Med2020,14(9):1250-1260. DOI:10.1002/term.3096.
[72]
Zhao A, Chung M, Yang Y,et al. The SDF-1/CXCR4 signaling pathway directs the migration of systemically transplanted bone marrow mesenchymal stem cells towards the lesion site in a rat model of spinal cord injury[J]. Curr Stem Cell Res Ther2023,18(2):216-230. DOI:10.2174/1574888X17666220510163245.
[73]
Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury[J]. Am J Physiol Renal Physiol2013,305(7):F1064-F1073. DOI:10.1152/ajprenal.00178.2013.
[74]
Guang LG, Boskey AL, Zhu W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro[J]. Int J Biochem Cell Biol2012,44(11):1825-1833. DOI:10.1016/j.biocel.2012.06.033.
[75]
Potter ML, Smith K, Vyavahare S,et al. Characterization of differentially expressed miRNAs by CXCL12/SDF-1 in human bone marrow stromal cells[J]. Biomol Concepts2021,12(1):132-143. DOI:10.1515/bmc-2021-0015.
[76]
Zhu W, Boachie-Adjei O, Rawlins BA,et al. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells[J]. J Biol Chem2007,282(26):18676-18685. DOI:10.1074/jbc.M610232200.
[77]
Kollet O, Dar A, Shivtiel S,et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells[J]. Nat Med2006,12(6):657-664. DOI:10.1038/nm1417.
[78]
Zhang C, Zhang W, Zhu D,et al. Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy[J]. J Nanobiotechnology2022,20(1):35. DOI:10.1186/s12951-021-01231-6.
[79]
Cross M, Smith E, Hoy D,et al. The global burden of hip and knee osteoarthritis:Estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis2014,73(7):1323-1330. DOI:10.1136/annrheumdis-2013-204763.
[80]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis:Current understanding with therapeutic implications[J]. Arthritis Res Ther2017,19(1):18. DOI:10.1186/s13075-017-1229-9.
[81]
Bagi CM, Berryman ER, Teo S,et al. Oral administration of undenatured native chicken typeⅡ collagen (UC-Ⅱ) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA)[J]. Osteoarthritis Cartilage2017,25(12):2080-2090. DOI:10.1016/j.joca.2017.08.013.
[82]
Wang G, Li Y, Meng X,et al. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs,typeⅡ collagen,and aggrecan levels in articular cartilage of guinea pigs[J]. J Orthop Surg Res2020,15(1):195. DOI:10.1186/s13018-020-01646-1.
[83]
Li J, Chen H, Zhang D,et al. The role of stromal cell-derived factor 1 on cartilage development and disease[J]. Osteoarthritis Cartilage2021,29(3):313-322. DOI:10.1016/j.joca.2020.10.010.
[84]
Lu W, He Z, Shi J,et al. AMD3100 attenuates post-traumatic osteoarthritis by maintaining transforming growth factor-β1-induced expression of tissue inhibitor of metalloproteinase-3 via the phosphatidylinositol 3-kinase/akt pathway[J]. Front Pharmacol2019,10:1554. DOI:10.3389/fphar.2019.01554.
[85]
Lu W, Shi J, Zhang J,et al. CXCL12/CXCR4 axis regulates aggrecanase activation and cartilage degradation in a post-traumatic osteoarthritis rat model[J]. Int J Mol Sci2016,17(10):E1522. DOI:10.3390/ijms17101522.
[86]
Qin H, Zhao X, Hu YJ,et al. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis[J]. Biomed Res Int2021:8852574. DOI:10.1155/2021/8852574.
[87]
Zhang Y, Li X, Li J,et al. Knee loading enhances the migration of adipose-derived stem cells to the osteoarthritic sites through the SDF-1/CXCR4 regulatory axis[J]. Calcif Tissue Int2022,111(2):171-184. DOI:10.1007/s00223-022-00976-y.
[88]
Zhang X, Sun Y, Chen W,et al. Nanoparticle functionalization with genetically-engineered mesenchymal stem cell membrane for targeted drug delivery and enhanced cartilage protection[J]. Biomater Adv2022,136:212802. DOI:10.1016/j.bioadv.2022.212802.
[89]
Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis[J]. Front Immunol2021,12:726747. DOI:10.3389/fimmu.2021.726747.
[90]
Bragg R, Gilbert W, Elmansi A M,et al. Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis[J]. Ther Adv Chronic Dis2019,10:20406 22319882531. DOI:10.1177/2040622319882531.
[91]
Kim KW, Cho ML, Kim HR,et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes:Role of interleukin-17 and CD40L-CD40 interaction[J]. Arthritis and Rheumatism2007,56(4):1076-1086. DOI:10.1002/art.22439.
[92]
Chen HT, Tsou HK, Hsu CJ,et al. Stromal cell-derived factor-1/CXCR4 promotes IL-6 production in human synovial fibroblasts[J]. J Cell Biochem2011,112(4):1219-1227. DOI:10.1002/jcb.23043.
[93]
Peng L, Zhu N, Mao J,et al. Expression levels of CXCR4 and CXCL12 in patients with rheumatoid arthritis and its correlation with disease activity[J]. Exp Ther Med2020,20(3):1925-1934. DOI:10.3892/etm.2020.8950.
[94]
Wang S, Zhou C, Zheng H,et al. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1[J]. Osteoarthritis Cartilage2017,25(5):742-749. DOI:10.1016/j.joca.2016.10.017.
[95]
Samarpita S, Rasool M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis[J]. Cytokine2021,142:155502. DOI:10.1016/j.cyto.2021.155502.
[96]
Cecchinato V, D′Agostino G, Raeli L,et al. Redox-mediated mechanisms fuel monocyte responses to CXCL12/HMGB1 in active rheumatoid arthritis[J]. Front Immunol2018,9:2118. DOI:10.3389/fimmu.2018.02118.
[97]
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis:A review[J]. Osteoporos Int2022,33(12):2495-2506. DOI:10.1007/s00198-022-06557-x.
[98]
Sözen T, Özişik L, Başaran . An overview and management of osteoporosis[J]. Eur J Rheumatol2017,4(1):46-56. DOI:10.5152/eurjrheum.2016.048.
[99]
Liu Q, Zhang X, Jiao Y,et al. In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats[J]. Int J Mol Med2018,41(2):669-678. DOI:10.3892/ijmm.2017.3280.
[100]
Garg P, Mazur MM, Buck AC,et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts[J]. Orthop Surg2017,9(1):13-19. DOI:10.1111/os.12304.
[101]
Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells[J]. Int J Biochem Cell Biol2013,45(8):1813-1820. DOI:10.1016/j.biocel.2013.05.034.
[102]
Gilbert W, Bragg R, Elmansi AM,et al. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology[J]. Cytokine2019,123:154783. DOI:10.1016/j.cyto.2019.154783.
[103]
Bai J, Ge G, Wang Q,et al. Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration[J]. Research (Wash D C)2022:9823784. DOI:10.34133/2022/9823784.
[104]
Hu Y, Li X, Zhang Q,et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss[J]. Bioact Mater2021,6(9):2905-2913. DOI:10.1016/j.bioactmat.2021.02.014.
[105]
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis:Framework and proposal of a new classification and case definition[J]. J Periodontol2018,89(Suppl 1):S159-S172. DOI:10.1002/JPER.18-0006.
[106]
Sun X, Gao J, Meng X,et al. Polarized macrophages in periodontitis:Characteristics,function,and molecular signaling[J]. Front Immunol2021,12:763334. DOI:10.3389/fimmu.2021.763334.
[107]
Bosshardt DD. The periodontal pocket:Pathogenesis,histopathology and consequences[J]. Periodontology 2000, 2018,76(1):43-50. DOI:10.1111/prd.12153.
[108]
Zhang X, Jin Y, Wang Q,et al. Autophagy-mediated regulation patterns contribute to the alterations of the immune microenvironment in periodontitis[J]. Aging (Albany NY)2020,13(1):555-577. DOI:10.18632/aging.202165.
[109]
Zhang Z, Zheng Y, Bian X,et al. Identification of key genes and pathways associated with oxidative stress in periodontitis[J]. Oxid Med Cell Longev2022:9728172. DOI:10.1155/2022/9728172.
[110]
Arjunan P, Meghil MM, Pi W,et al. Oral pathobiont activates anti-apoptotic pathway,promoting both immune suppression and oncogenic cell proliferation[J]. Sci Rep2018,8(1):16607. DOI:10.1038/s41598-018-35126-8.
[111]
Yamashiro K, Ideguchi H, Aoyagi H,et al. High mobility Group Box 1 expression in oral inflammation and regeneration[J]. Front Immunol2020,11:1461. DOI:10.3389/fimmu.2020.01461.
[112]
Luo H, Chen D, Li R,et al. Genetically engineered CXCR4-modified exosomes for delivery of miR-126 mimics to macrophages alleviate periodontitis[J]. J Nanobiotechnology. 2023,21(1):116. DOI:10.1186/s12951-023-01863-w.
[113]
Mehta SA, Christopherson KW, Bhat-Nakshatri P,et al. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells:Implications of p53 mutation or isoform expression on breast cancer cell invasion[J]. Oncogene2007,26(23):3329-3337. DOI:10.1038/sj.onc.1210120.
[114]
Orimo A, Gupta PB, Sgroi DC,et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell2005,121(3):335-348. DOI:10.1016/j.cell.2005.02.034.
[115]
Chinni SR, Yamamoto H, Dong Z,et al. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone[J]. Mol Cancer Res2008,6(3):446-457. DOI:10.1158/1541-7786.MCR-07-0117.
[116]
Lai TH, Fong YC, Fu WM,et al. Stromal cell-derived factor-1 increase alphavbeta3 integrin expression and invasion in human chondrosarcoma cells[J]. J Cell Physiol2009,218(2):334-342. DOI:10.1002/jcp.21601.
[117]
Lu Y, Hu B, Guan GF,et al. SDF-1/CXCR4 promotes F5M2 osteosarcoma cell migration by activating the Wnt/β-catenin signaling pathway[J]. Med Oncol2015,32(7):194. DOI:10.1007/s12032-015-0576-0.
[118]
Xi Y, Qi Z, Ma J,et al. PTEN loss activates a functional AKT/CXCR4 signaling axis to potentiate tumor growth and lung metastasis in human osteosarcoma cells[J]. Clin Exp Metastasis2020,37(1):173-185. DOI:10.1007/s10585-019-09998-7.
[119]
Liu J, Feng G, Li Z,et al. Long non-coding RNA FEZF1-AS1 modulates CXCR4 to promote cell proliferation,warburg effect and suppress cell apoptosis in osteosarcoma by sponging miR-144[J]. Onco Targets Ther2020,13:2899-2910. DOI:10.2147/OTT.S235970.
[1] 冯芳, 陈宇, 杨静, 满珂, 蔡红燕, 李群. ω-3鱼油脂肪乳注射液在脓毒症患者中的应用:前瞻性、随机对照、先导试验[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 136-139.
[2] 陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.
[3] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[9] 缪慧, 吴震. 茚达特罗格隆溴铵对COPD患者肺功能和炎症反应的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 852-855.
[10] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[11] 吴宗盛, 谢剑锋, 邱海波. 冷诱导RNA结合蛋白与炎症反应的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 42-47.
[12] 陈雪飞, 卜雄建, 张春良. 神经内镜下经鼻蝶窦扩大鞍底入路颅咽管瘤切除术的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 160-165.
[13] 谢森, 韩轶鹏, 秦至臻, 赵卫良, 毛更生. 脑损伤后慢性炎症反应致巨大占位效应一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 379-381.
[14] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[15] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?