切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 334 -338. doi: 10.3877/cma.j.issn.1674-1366.2020.05.011

所属专题: 口腔医学 文献

综述

氧化应激状态对骨生物材料理化性能及成骨效能的影响
黄静燕1, 王焱1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2020-02-07 出版日期:2020-10-01
  • 通信作者: 王焱

Research progress on the osteogenesis of bone biomaterials under oxidative stress

Jingyan Huang1, Yan Wang1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincal Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2020-02-07 Published:2020-10-01
  • Corresponding author: Yan Wang
  • About author:
    Corresponding author: Wang Yan, Email:
  • Supported by:
    Guangdong Basic and Applied Basic Research Foundation(2019A1515011842); Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-09)
引用本文:

黄静燕, 王焱. 氧化应激状态对骨生物材料理化性能及成骨效能的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 334-338.

Jingyan Huang, Yan Wang. Research progress on the osteogenesis of bone biomaterials under oxidative stress[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(05): 334-338.

老年人及衰老相关性疾病、糖尿病等患病人群中骨植入材料周围的骨形成往往是受限的,而氧化应激是这类疾病的重要发病机制。近年来,骨生物材料在氧化应激微环境中的应用逐步受到关注,本文对氧化应激状态下骨生物材料成骨能力的研究进展进行综述,总结了骨生物材料与氧化应激微环境的相互作用,以加深对各病理状态下骨生物材料成骨机制的认识,同时为临床上选择合适的骨植入材料及设计新型的普适的骨生物材料提供依据和参考。

The osteogenesis of bone biomaterials tends to be compromised among the population suffering from aging and aging related diseases as well as diabetes. It has been shown that such diseases are closely related to oxidative stress. In recent years, the application of bone biomaterials under oxidative stress microenvironment comes into focus. Upon reviewing the related publications, the osteogenesis of bone biomaterials, or the interplay between the biomaterials and the oxidative stress microenvironment was summarized. This review was expected to deepen the understanding on the osteogenic mechanism of bone biomaterials in pathological status, and play a reference role on the selection of appropriate bone biomaterials clinically and the design of novel universal biomaterials.

[1]
Hendrickx G, Boudin E, Van Hul W. A look behind the scenes:the risk and pathogenesis of primary osteoporosis[J]. Nat Rev Rheumatol,2015,11(8): 462-474. DOI: 10.1038/nrrheum.2015.48.
[2]
Goettsch C, Babelova A, Trummer O,et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis[J]. J Clin Invest,2013,123(11): 4731-4738. DOI: 10.1172/JCI67603.
[3]
Mouthuy PA, Snelling SJB, Dakin SG,et al. Biocompatibility of implantable materials:An oxidative stress viewpoint[J]. Biomaterials,2016,109: 55-68. DOI: 10.1016/j.biomaterials.2016.09.010.
[4]
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation:a review[J]. Stem Cells Dev,2015,24(10): 1150-1163. DOI: 10.1089/scd.2014.0484.
[5]
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J]. Cell Signal,2012,24(5): 981-990. DOI: 10.1016/j.cellsig.2012.01.008.
[6]
Sies H. On the history of oxidative stress:Concept and some aspects of current development[J]. Curr Opin Toxicol,2018,7: 122-126. DOI: 10.1016/j.cotox.2018.01.002.
[7]
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress:Oxidative eustress[J]. Redox Biol,2017,11: 613-619. DOI: 10.1016/j.redox.2016.12.035.
[8]
Finkel T, Holbrook NJ. Oxidants,oxidative stress and the biology of ageing[J]. Nature,2000,408(6809): 239-247. DOI: 10.1038/35041687.
[9]
Liu WF, Ma M, Bratlie KM,et al. Real-time in vivo detection of biomaterial-induced reactive oxygen species[J]. Biomaterials,2011,32(7): 1796-1801. DOI: 10.1016/j.biomaterials.2010.11.029.
[10]
Park HJ, Shin KC, Yoou SK,et al. Hydrogen peroxide constricts rat arteries by activating Na+-permeable and Ca2+-permeable cation channels[J]. Free Radic Res,2019,53(1): 94-103. DOI: 10.1080/10715762.2018.1556394.
[11]
Reuter S, Gupta SC, Chaturvedi MM,et al. Oxidative stress,inflammation,and cancer:how are they linked?[J]. Free Radic Biol Med,2010,49(11): 1603-1616. DOI: 10.1016/j.freeradbiomed.2010.09.006.
[12]
Yang B, Chen Y, Shi J. Reactive Oxygen Species(ROS)-Based Nanomedicine[J]. Chem Rev,2019,119(8): 4881-4985. DOI: 10.1021/acs.chemrev.8b00626.
[13]
Idelchik MDPS, Begley U, Begley TJ,et al. Mitochondrial ROS control of cancer[J]. Semin Cancer Biol,2017,47: 57-66. DOI: 10.1016/j.semcancer.2017.04.005.
[14]
Bedell HW, Schaub NJ, Capadona JR,et al. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes[J]. Acta Biomater,2020,102: 205-219. DOI: 10.1016/j.actbio.2019.11.017.
[15]
Chen Z, Bachhuka A, Han S,et al. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications[J]. ACS Nano,2017,11(5): 4494-4506. DOI: 10.1021/acsnano.6b07808.
[16]
Becker M, Schneider M, Stamm C,et al. A Polymorphonuclear Leukocyte Assay to Assess Implant Immunocompatibility[J]. Tissue Eng Part C Methods,2019,25(8): 500-511. DOI: 10.1089/ten.TEC.2019.0105.
[17]
de Souza LF, Pearson AG, Pace PE,et al. Peroxiredoxin expression and redox status in neutrophils and HL-60 cells[J]. Free Radic Biol Med,2019,135: 227-234. DOI: 10.1016/j.freeradbiomed.2019.03.007.
[18]
Murray PJ, Allen JE, Biswas SK,et al. Macrophage activation and polarization:nomenclature and experimental guidelines[J]. Immunity,2014,41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
[19]
Virág L, Jaén RI, Regdon Z,et al. Self-defense of macrophages against oxidative injury:Fighting for their own survival[J]. Redox Biol,2019,26: 101261. DOI: 10.1016/j.redox.2019.101261.
[20]
Regdon Z, Robaszkiewicz A, Kovács K,et al. LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression,induction of SOD2 expression,and a metabolic shift to aerobic glycolysis[J]. Free Radic Biol Med,2019,131: 184-196. DOI: 10.1016/j.freeradbiomed.2018.11.034.
[21]
Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases[J]. Free Radic Biol Med,2004,37(6): 768-784. DOI: 10.1016/j.freeradbiomed.2004.06.008.
[22]
Yasuoka H, Garrett SM, Nguyen XX,et al. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(4): L644-L655. DOI: 10.1152/ajplung.00106.2018.
[23]
Ali SA, Rizk MZ, Hamed MA,et al. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice:effect of dose and particle size[J]. Biomarkers,2019,24(5): 492-498. DOI: 10.1080/1354750X.2019.1620336.
[24]
Zhu WQ, Shao SY, Xu LN,et al. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment[J]. J Nanobiotechnology,2019,17(1): 55. DOI: 10.1186/s12951-019-0488-9.
[25]
Fonseca-García A, Pérez-Alvarez J, Barrera CC,et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials[J]. Mater Sci Eng C Mater Biol Appl,2016,66: 119-129. DOI: 10.1016/j.msec.2016.04.035.
[26]
Lauria I, Kutz TN, Böke F,et al. Influence of nanoporous titanium niobium alloy surfaces produced via hydrogen peroxide oxidative etching on the osteogenic differentiation of human mesenchymal stromal cells[J]. Mater Sci Eng C Mater Biol Appl,2019,98: 635-648. DOI: 10.1016/j.msec.2019.01.023.
[27]
Ueno T, Ikeda T, Tsukimura N,et al. Novel antioxidant capability of titanium induced by UV light treatment[J]. Biomaterials,2016,108: 177-186. DOI: 10.1016/j.biomaterials.2016.08.050.
[28]
Yu Y, Shen X, Luo Z,et al. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment[J]. Biomaterials,2018,167: 44-57. DOI: 10.1016/j.biomaterials.2018.03.024.
[29]
Shen X, Yu Y, Ma P,et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress[J]. Colloids Surf B Biointerfaces,2019,180: 39-48. DOI: 10.1016/j.colsurfb.2019.04.033.
[30]
Chen W, Shen X, Hu Y,et al. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis[J]. Biomaterials,2017,114: 82-96. DOI: 10.1016/j.biomaterials.2016.10.055.
[31]
Zhou T, Yan L, Xie C,et al. A Mussel-Inspired Persistent ROS-Scavenging,Electroactive,and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly[J]. Small,2019,15(25): e1805440. DOI: 10.1002/smll.201805440.
[32]
Calvo-Guirado JL, Ramirez-Fernández MP, Gomez-Moreno G,et al. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits[J]. J Pineal Res,2010,49(4): 356-363. DOI: 10.1111/j.1600-079X.2010.00801.x.
[33]
Zhou W, Liu Y, Shen J,et al. Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3/SOD2 Signaling Pathway[J]. Oxid Med Cell Longev,2019,2019: 4019619. DOI: 10.1155/2019/4019619.
[34]
Zhao H, Dong Y, Jiang P,et al. Highly dispersed CeO2 on TiO2 nanotube:a synergistic nanocomposite with superior peroxidase-like activity[J]. ACS Appl Mater Interfaces,2015,7(12): 6451-6461. DOI: 10.1021/acsami.5b00023.
[35]
Li J, Wen J, Li B,et al. Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation[J]. Adv Sci(Weinh),2018,5(2): 1700678. DOI: 10.1002/advs.201700678.
[36]
Pandey A, Midha S, Sharma RK,et al. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications[J]. Mater Sci Eng C Mater Biol Appl,2018,88: 13-24. DOI: 10.1016/j.msec.2018.02.014.
[1] 郝耀, 陈丽, 韩永斌, 高宏, 韩树峰. miRNA在骨骼生长发育和骨性关节炎中的作用[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 73-77.
[2] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[3] 陈欣, 张校晨, 秦文, 金作林. 过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 15-25.
[4] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[5] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[6] 杨斌, 胡光太, 周纲. 完整剥离和横断疝囊在单侧腹股沟斜疝经腹腹膜前修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 42-46.
[7] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[8] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[9] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[12] 孙凤兰, 周萍, 程兴璞, 张倩倩. 腹腔镜全子宫切除术对子宫肌瘤患者机体氧化应激损伤及术后并发症的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 149-153.
[13] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[14] 靳潇潇, 郑聪, 何文强. 肾结石与高血压关系的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1284-1288.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要