[1] |
Hendrickx G, Boudin E, Van Hul W. A look behind the scenes:the risk and pathogenesis of primary osteoporosis[J]. Nat Rev Rheumatol,2015,11(8): 462-474. DOI: 10.1038/nrrheum.2015.48.
|
[2] |
Goettsch C, Babelova A, Trummer O,et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis[J]. J Clin Invest,2013,123(11): 4731-4738. DOI: 10.1172/JCI67603.
|
[3] |
Mouthuy PA, Snelling SJB, Dakin SG,et al. Biocompatibility of implantable materials:An oxidative stress viewpoint[J]. Biomaterials,2016,109: 55-68. DOI: 10.1016/j.biomaterials.2016.09.010.
|
[4] |
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation:a review[J]. Stem Cells Dev,2015,24(10): 1150-1163. DOI: 10.1089/scd.2014.0484.
|
[5] |
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J]. Cell Signal,2012,24(5): 981-990. DOI: 10.1016/j.cellsig.2012.01.008.
|
[6] |
Sies H. On the history of oxidative stress:Concept and some aspects of current development[J]. Curr Opin Toxicol,2018,7: 122-126. DOI: 10.1016/j.cotox.2018.01.002.
|
[7] |
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress:Oxidative eustress[J]. Redox Biol,2017,11: 613-619. DOI: 10.1016/j.redox.2016.12.035.
|
[8] |
Finkel T, Holbrook NJ. Oxidants,oxidative stress and the biology of ageing[J]. Nature,2000,408(6809): 239-247. DOI: 10.1038/35041687.
|
[9] |
Liu WF, Ma M, Bratlie KM,et al. Real-time in vivo detection of biomaterial-induced reactive oxygen species[J]. Biomaterials,2011,32(7): 1796-1801. DOI: 10.1016/j.biomaterials.2010.11.029.
|
[10] |
Park HJ, Shin KC, Yoou SK,et al. Hydrogen peroxide constricts rat arteries by activating Na +-permeable and Ca 2+-permeable cation channels[J]. Free Radic Res,2019,53(1): 94-103. DOI: 10.1080/10715762.2018.1556394.
|
[11] |
Reuter S, Gupta SC, Chaturvedi MM,et al. Oxidative stress,inflammation,and cancer:how are they linked?[J]. Free Radic Biol Med,2010,49(11): 1603-1616. DOI: 10.1016/j.freeradbiomed.2010.09.006.
|
[12] |
Yang B, Chen Y, Shi J. Reactive Oxygen Species(ROS)-Based Nanomedicine[J]. Chem Rev,2019,119(8): 4881-4985. DOI: 10.1021/acs.chemrev.8b00626.
|
[13] |
|
[14] |
Bedell HW, Schaub NJ, Capadona JR,et al. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes[J]. Acta Biomater,2020,102: 205-219. DOI: 10.1016/j.actbio.2019.11.017.
|
[15] |
Chen Z, Bachhuka A, Han S,et al. Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications[J]. ACS Nano,2017,11(5): 4494-4506. DOI: 10.1021/acsnano.6b07808.
|
[16] |
Becker M, Schneider M, Stamm C,et al. A Polymorphonuclear Leukocyte Assay to Assess Implant Immunocompatibility[J]. Tissue Eng Part C Methods,2019,25(8): 500-511. DOI: 10.1089/ten.TEC.2019.0105.
|
[17] |
de Souza LF, Pearson AG, Pace PE,et al. Peroxiredoxin expression and redox status in neutrophils and HL-60 cells[J]. Free Radic Biol Med,2019,135: 227-234. DOI: 10.1016/j.freeradbiomed.2019.03.007.
|
[18] |
Murray PJ, Allen JE, Biswas SK,et al. Macrophage activation and polarization:nomenclature and experimental guidelines[J]. Immunity,2014,41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
|
[19] |
Virág L, Jaén RI, Regdon Z,et al. Self-defense of macrophages against oxidative injury:Fighting for their own survival[J]. Redox Biol,2019,26: 101261. DOI: 10.1016/j.redox.2019.101261.
|
[20] |
Regdon Z, Robaszkiewicz A, Kovács K,et al. LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression,induction of SOD2 expression,and a metabolic shift to aerobic glycolysis[J]. Free Radic Biol Med,2019,131: 184-196. DOI: 10.1016/j.freeradbiomed.2018.11.034.
|
[21] |
|
[22] |
Yasuoka H, Garrett SM, Nguyen XX,et al. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5[J]. Am J Physiol Lung Cell Mol Physiol,2019,316(4): L644-L655. DOI: 10.1152/ajplung.00106.2018.
|
[23] |
Ali SA, Rizk MZ, Hamed MA,et al. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice:effect of dose and particle size[J]. Biomarkers,2019,24(5): 492-498. DOI: 10.1080/1354750X.2019.1620336.
|
[24] |
Zhu WQ, Shao SY, Xu LN,et al. Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment[J]. J Nanobiotechnology,2019,17(1): 55. DOI: 10.1186/s12951-019-0488-9.
|
[25] |
Fonseca-García A, Pérez-Alvarez J, Barrera CC,et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials[J]. Mater Sci Eng C Mater Biol Appl,2016,66: 119-129. DOI: 10.1016/j.msec.2016.04.035.
|
[26] |
Lauria I, Kutz TN, Böke F,et al. Influence of nanoporous titanium niobium alloy surfaces produced via hydrogen peroxide oxidative etching on the osteogenic differentiation of human mesenchymal stromal cells[J]. Mater Sci Eng C Mater Biol Appl,2019,98: 635-648. DOI: 10.1016/j.msec.2019.01.023.
|
[27] |
Ueno T, Ikeda T, Tsukimura N,et al. Novel antioxidant capability of titanium induced by UV light treatment[J]. Biomaterials,2016,108: 177-186. DOI: 10.1016/j.biomaterials.2016.08.050.
|
[28] |
Yu Y, Shen X, Luo Z,et al. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment[J]. Biomaterials,2018,167: 44-57. DOI: 10.1016/j.biomaterials.2018.03.024.
|
[29] |
Shen X, Yu Y, Ma P,et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress[J]. Colloids Surf B Biointerfaces,2019,180: 39-48. DOI: 10.1016/j.colsurfb.2019.04.033.
|
[30] |
Chen W, Shen X, Hu Y,et al. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis[J]. Biomaterials,2017,114: 82-96. DOI: 10.1016/j.biomaterials.2016.10.055.
|
[31] |
Zhou T, Yan L, Xie C,et al. A Mussel-Inspired Persistent ROS-Scavenging,Electroactive,and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly[J]. Small,2019,15(25): e1805440. DOI: 10.1002/smll.201805440.
|
[32] |
Calvo-Guirado JL, Ramirez-Fernández MP, Gomez-Moreno G,et al. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits[J]. J Pineal Res,2010,49(4): 356-363. DOI: 10.1111/j.1600-079X.2010.00801.x.
|
[33] |
Zhou W, Liu Y, Shen J,et al. Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3/SOD2 Signaling Pathway[J]. Oxid Med Cell Longev,2019,2019: 4019619. DOI: 10.1155/2019/4019619.
|
[34] |
Zhao H, Dong Y, Jiang P,et al. Highly dispersed CeO 2 on TiO 2 nanotube:a synergistic nanocomposite with superior peroxidase-like activity[J]. ACS Appl Mater Interfaces,2015,7(12): 6451-6461. DOI: 10.1021/acsami.5b00023.
|
[35] |
Li J, Wen J, Li B,et al. Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation[J]. Adv Sci(Weinh),2018,5(2): 1700678. DOI: 10.1002/advs.201700678.
|
[36] |
Pandey A, Midha S, Sharma RK,et al. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications[J]. Mater Sci Eng C Mater Biol Appl,2018,88: 13-24. DOI: 10.1016/j.msec.2018.02.014.
|