切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 88 -94. doi: 10.3877/cma.j.issn.1674-1366.2020.02.005

所属专题: 文献

基础研究

白细胞介素1β对人牙周膜干细胞和骨髓间充质干细胞骨向分化的影响
张静1,(), 李晨晨2, 孟箭3   
  1. 1. 徐州市医学科学研究所 221009;徐州医科大学徐州临床学院 221009;徐州市中心医院口腔科 221009
    2. 徐州市中心医院口腔科 221009
    3. 徐州医科大学徐州临床学院 221009;徐州市中心医院口腔科 221009
  • 收稿日期:2019-10-22 出版日期:2020-04-01
  • 通信作者: 张静

The effect of interleukin-1β on the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells

Jing Zhang1,(), Chenchen Li2, Jian Meng3   

  1. 1. Xuzhou Institute of Medical Science, Xuzhou 221009, China; Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China; Department of Stomatology, Xuzhou Central Hospital, Xuzhou 221009, China
    2. Department of Stomatology, Xuzhou Central Hospital, Xuzhou 221009, China
    3. Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China; Department of Stomatology, Xuzhou Central Hospital, Xuzhou 221009, China
  • Received:2019-10-22 Published:2020-04-01
  • Corresponding author: Jing Zhang
  • About author:
    Corresponding author: Zhang Jing, Email:
  • Supported by:
    National Natural Science Foundation of China(31700814); Science and Technology Project of Xuzhou(KC18032)
引用本文:

张静, 李晨晨, 孟箭. 白细胞介素1β对人牙周膜干细胞和骨髓间充质干细胞骨向分化的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(02): 88-94.

Jing Zhang, Chenchen Li, Jian Meng. The effect of interleukin-1β on the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(02): 88-94.

目的

研究白细胞介素1β(IL-1β)作用下人牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)骨向分化的差异。

方法

应用茜素红染色、碱性磷酸酶(ALP)活性检测、细胞增殖能力(MTT)法和实时荧光聚合酶链反应(PCR)对PDLSC和BMSC在IL-1β作用下的骨向分化能力进行检测,并比较两者之间的差异。实验组为含有IL-1β的各处理组,对照组内未加IL-1β。采用单因素方差分析和t检验对数据进行统计分析。

结果

随IL-1β浓度的增高,PDLSC形成矿化结节减少,茜素红染色逐渐变浅;而BMSC骨向分化能力未见明显减弱;ALP活性实验结果表明,在7 d时PDLSC各实验组与对照组相比差异具有统计学意义(F = 2361.11,P<0.001),BMSC各实验组与对照组相比ALP活性差异具有统计学意义(F = 240.68,P<0.001);在14 d时PDLSC随炎症因子浓度增高,ALP活性显著降低,差异具有统计学意义(F = 1519.89,P<0.001),BMSC在IL-1β浓度为0.001、0.01、1 ng/mL的实验组与对照组相比ALP活性差异具有统计学意义(F = 22.52,P<0.001),两种干细胞在IL-1β最大浓度时(1 ng/mL)ALP活性最低;MTT结果表明,IL-1β能抑制干细胞的增殖能力,与PDLSC相比,BMSC增殖能力较低。实时荧光PCR结果显示,与对照组相比,两种干细胞实验组内ALPCol-1OCNRunx2 mRNA表达水平均降低,BMSC内实验组中骨向分化基因表达与PDLSC内实验组相比,差异均有统计学意义(P<0.05)。

结论

在IL-1β作用下,BMSC的成骨能力较PDLSC高。

Objective

To investigate the effect of interleukin-1β (IL-1β) on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) .

Methods

The osteogenic differentiation ability of PDLSCs and BMSCs was tested by Alizarin Red staining, alkaline phosphatase (ALP) activity, MTT, and real-time PCR with the presence of IL-1β. The PDLSCs or BMSCs cultured with IL-1β were the experimental groups, while the control group was cultured without IL-1β. One-Way ANOVA and t-test were applied to perform the statistical analysis of the data.

Results

Mineralization staining showed that an inhibitory effect of IL-1β on the osteogenic differentiation of PDLSCs with increasing dose. However, BMSCs were more resistant to the inflammatory cytokine compared to PDLSCs in terms of a stronger alizarin red staining. The results of ALP activity test showed that a significant difference between the PDLSCs experimental groups and the control group was found at 7 days (F = 2361.11, P<0.001) ; for BMSCs, a similar result was also observed between the experimental groups and the control group (F = 240.68, P<0.001) . At 14 days, with the increase of inflammatory factor concentration, the activity of ALP in PDLSCs decreased significantly (F = 1519.89, P<0.001) . The ALP activity of the experimental groups with IL-1β concentration of 0.001, 0.01 and 1 ng/mL in BMSCs was significantly different from that of the control group (F = 22.52, P<0.001) . ALP activity of the two kinds of stem cells was the lowest with the presence of the maximum concentration of IL-1β (1 ng/mL) . Proliferation results showed that IL-1β exhibited inhibitory effects on cell proliferation and BMSCs possessed a lower proliferative potential than PDLSCs. Real-time PCR analysis of osteoblast lineage gene expression revealed that the IL-1β suppressed the expression levels of ALP, Col-1, OCN and Runx2 mRNA in PDLSCs and BMSCs at 14 days compared with the control group. The difference of mRNA expression levels was statistically significant between the BMSCs experimental group and the PDLSCs experimental group.

Conclusions

A significant difference on the osteogenesis between PDLSCs and BMSCs was observed. Compared with PDLSCs, BMSCs showed a stronger capacity of modulation in local microenvironment via anti-inflammatory functions.

表1 实时定量PCR引物序列
图1 牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)茜素红染色
图2 不同浓度IL-1β处理牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)后各组相对碱性磷酸酶(ALP)活性统计图 相同时间点上同种干细胞各实验组与对照组(0 ng/mL)相比,aP<0.001;A:7 d;B:14 d
表2 不同浓度IL-1β对牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)碱性磷酸酶(ALP)活性的影响( ± s
图3 不同浓度IL-1β处理牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)后各组相对细胞增殖活性统计图 相同时间点上同种干细胞各实验组与对照组(0 ng/mL)相比,aP<0.001;A:1 d;B:4 d;C:7 d
表3 不同浓度IL-1β对牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)细胞增殖活性的影响( ± s
表4 IL-1β作用下牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)骨向分化相关基因mRNA表达水平的统计结果( ± s
图4 14 d时牙周膜干细胞(PDLSC)和骨髓间充质干细胞(BMSC)骨向分化基因的表达(abcP<0.05)A:ALP;B:Col-1;C:OCN;D:Runx2
[1]
Chen FM,Sun HH,Lu H,et al. Stem cell-delivery therapeutics for periodontal tissue regeneration[J]. Biomaterials,2012,33(27):6320-6644. DOI:10.1016/j.biomaterials.2012.05.048.
[2]
Li G,Hu J,Chen H,et al. Enamel matrix derivative enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells on the titanium implant surface[J]. Organogenesis,2017,13(3):103-113. DOI:10.1080/15476278.2017.1331196.
[3]
Wang T,Kang W,Du L,et al. Rho-kinase inhibitor Y-27632 facilitates the proliferation,migration and pluripotency of human periodontal ligament stem cells[J]. J Cell Mol Med,2017,21(11):3100-3112. DOI:10.1111/jcmm.13222.
[4]
Gu X,Li M,Jin Y,et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet,2017,18(1):100. DOI:10.1186/s12863-017-0569-4.
[5]
Faizuddin M,Bharathi SH,Rohini NV. Estimation of interleukin-1beta levels in the gingival crevicular fluid in health and in inflammatory periodontal disease[J]. J Periodontal Res,2003,38(2):111-114. DOI:10.1034/j.1600-0765.2003.01649.x.
[6]
Toyman U,Tüter G,Kurtiş B,et al. Evaluation of gingival crevicular fluid levels of tissue plasminogen activator,plasminogen activator inhibitor 2,matrix metalloproteinase-3 and interleukin 1-β in patients with different periodontal diseases[J]. J Periodontal Res,2015,50(1):44-51. DOI:10.1111/jre.12179.
[7]
Gonzales JR,Herrmann JM,Boedeker RH,et al. Concentration of interleukin-1beta and neutrophil elastase activity in gingival crevicular fluid during experimental gingivitis[J]. J Clin Periodontol,2001,28(6):544-549. DOI:10.1034/j.1600-051x.2001.028006544.x.
[8]
Yang ZH,Zhang XJ,Dang NN,et al. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues[J]. J Periodontal Res,2009,44(2):199-210. DOI:10.1111/j.1600-0765.2008.01106.x.
[9]
张静,陈彬,段银钟,等.炎性环境下牙周膜、骨髓间充质干细胞骨向分化差异性的研究[J].口腔医学研究,2014,30(10):939-944. DOI:10.13701/j.cnki.kqyxyj.2014.10.007.
[10]
Offenbacher S,Barros S,Mendoza L,et al. Changes in gingival crevicular fluid inflammatory mediator levels during the induction and resolution of experimental gingivitis in humans[J]. J Clin Periodontol,2010,37(4):324-333. DOI:10.1111/j.1600-051X.2010.01543.x.
[11]
Preshaw PM,Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis?[J]. J Clin Periodontol,2011,38 Suppl 11:60-84. DOI:10.1111/j.1600-051X.2010.01671.x.
[12]
Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147. DOI:10.1126/science.284.5411.143.
[13]
Mao CY,Wang YG,Zhang X,et al. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB,MAPK and BMP/Smad signaling pathways[J]. Cell Death Dis,2016,7:e2296. DOI:10.1038/cddis.2016.204.
[14]
Chang J,Wang Z,Tang E,et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB[J]. Nat Med,2009,15(6):682-689. DOI:10.1038/nm.1954.
[15]
Chen X,Hu C,Wang G,et al. Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments[J]. Cell Death Dis,2013,4:e510. DOI:10.1038/cddis.2013.14.
[16]
Li C,Li B,Dong Z,et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway[J]. Stem Cell Res Ther,2014,5(3):67. DOI:10.1186/scrt456.
[17]
Kavanagh H,Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells[J]. Allergy,2011,66(4):523-531. DOI:10.1111/j.1398-9995.2010.02509.x.
[18]
Burr SP,Dazzi F,Garden OA. Mesenchymal stromal cells and regulatory T cells:the Yin and Yang of peripheral tolerance?[J]. Immunol Cell Biol,2013,91(1):12-18. DOI:10.1038/icb.2012.60.
[19]
Melief SM,Schrama E,Brugman MH,et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages[J]. Stem Cells,2013,31(9):1980-1991. DOI:10.1002/stem.1432.
[20]
Carty F,Mahon BP,English K. The influence of macrophages on mesenchymal stromal cell therapy:passive or aggressive agents?[J]. Clin Exp Immunol,2017,188(1):1-11. DOI:10.1111/cei.12929.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[6] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[7] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要