切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 144 -150. doi: 10.3877/cma.j.issn.1674-1366.2019.03.003

所属专题: 文献

基础研究

鸢尾素对大鼠骨髓间充质干细胞Sost基因表达及成骨分化的影响
田梦婷1, 刘晶1, 曾雪敏1, 张文静1, 韩祥祯1, 何惠宇1,()   
  1. 1. 新疆医科大学附属口腔医院,新疆维吾尔自治区口腔医学研究所,乌鲁木齐 830000
  • 收稿日期:2019-01-26 出版日期:2019-06-01
  • 通信作者: 何惠宇

Effect of Irisin on osteogenic differentiation and Sost of rat bone marrow mesenchymal stem cells

Mengting Tian1, Jing Liu1, Xuemin Zeng1, Wenjing Zhang1, Xiangzhen Han1, Huiyu He1,()   

  1. 1. Xinjiang Medical University, Affiliated stomatological hospital, Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi 830000, China
  • Received:2019-01-26 Published:2019-06-01
  • Corresponding author: Huiyu He
  • About author:
    Corresponding author: He Huiyu, Email:
  • Supported by:
    National Natural Science Foundation of China(81660177)
引用本文:

田梦婷, 刘晶, 曾雪敏, 张文静, 韩祥祯, 何惠宇. 鸢尾素对大鼠骨髓间充质干细胞Sost基因表达及成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 144-150.

Mengting Tian, Jing Liu, Xuemin Zeng, Wenjing Zhang, Xiangzhen Han, Huiyu He. Effect of Irisin on osteogenic differentiation and Sost of rat bone marrow mesenchymal stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(03): 144-150.

目的

探究鸢尾素(Irisin)对大鼠骨髓间充质干细胞(BMSC)Sost基因表达及成骨分化的影响。

方法

设置Irisin不同浓度组(0、80、100、120 ng/mL),细胞计数试剂盒(CCK-8)法选择Irisin的最佳实验浓度。用含有Irisin的培养液培养大鼠BMSC设置为实验组,对照组为单纯培养液培养,3、7、14 d进行茜素红、von Kossa钙盐染色;3、10 d采用反转录聚合酶链反应(RT-PCR)和Western bolt检测成骨相关基因mRNA及蛋白表达。分别采用单因素方差分析和t检验对数据进行统计分析。

结果

(1)培养3 d时,100 ng/mL的Irisin促进大鼠BMSC增殖的效果明显(OD=0.951),与对照组相比差异有统计学意义(F=102.52,P<0.05);(2)实验组染色深度、钙结节大小和数量都明显高于对照组;(3)与对照组相比,实验组Sost mRNA及其蛋白表达水平明显下降,ALPLrp5BMP2Smad1的mRNA及其蛋白表达水平明显增高,差异均有统计学意义(P<0.001)。

结论

(1)Irisin可抑制Sost基因的表达;(2)Irisin可在体外促进大鼠BMSC增殖和成骨分化;(3)Wnt和BMP信号通路可能在Irisin促进大鼠BMSC成骨分化中发挥作用。

Objective

To investigate the effect of Irisin on osteogenic differentiation and Sost of rat bone marrow mesenchymal stem cells (BMSCs) .

Methods

Irisin was set to have different concentrations (0, 80, 100, 120 ng/mL) , and the optimal concentration of Irisin was determined by CCK-8 method. The BMSCs cultured with Irisin was the experimental group, while the control group was cultured without Irisin. The alizarin red and von Kossa were stained on the 3rd, 7th and 14th day to observe the positive region of osteogenic differentiation and the expression intensity. The mRNA and protein expression levels of the bone-related genes were detected by RT-PCR and Western bolt at 3rd and 10th days. The One-Way ANOVA and t-test were applied to perform the statistical analysis of the data.

Results

(1) Irisin at a concentration of 100 ng/mL promoted the proliferation of rat BMSCs significantly after cultured three days (OD=0.951; F=102.52, P<0.05) . (2) The depth of staining and the size as well as the number of calcium nodules in the experimental group were significantly higher than those in the control group. (3) Compared with the control group, the mRNA and protein expression levels of the bone-related genes: ALP, Lrp5, BMP2 and Smad1 were significantly increased, but the expression levels of Sost mRNA and protein were significantly decreased (P<0.001) .

Conclusions

(1) Irisin can inhibit the expression of the Sost gene (2) Irisin can promote the proliferation and osteogenic differentiation of rat BMSCs in vitro. (3) Wnt and BMP signaling pathway may play a role in Irisin promoting osteogenic differentiation of rat BMSCs.

表1 实时荧光定量聚合酶链反应目的基因的引物序列
图1 P1、P3和P5代大鼠骨髓间充质干细胞生长曲线
图2 体外培养大鼠骨髓间充质干细胞各代细胞镜下形态(低倍放大)A:P1代细胞,融合度未达到95%,细胞中存在杂细胞;B:P2代细胞,杂细胞数量减少,且细胞形态规律,呈现长梭形;C:P3代细胞,融合度95%以上,且排列出显著的方向性,活力旺盛;D:P5代细胞,细胞出现老化,融合度有所减少
图3 不同浓度Irisin对骨髓间充质干细胞增殖活性的影响
图4 各组大鼠骨髓间充质干细胞(BMSC)茜素红染色结果(低倍放大)A、B、C:对照组分别在3、7和14 d的茜素红染色结果;D、E、F:实验组分别在3、7和14 d的茜素红染色结果
图5 各组大鼠骨髓间充质干细胞(BMSC)von Kossa钙盐染色结果(低倍放大)A、B、C:对照组分别在3、7和14 d的von Kossa钙盐染色结果;D、E、F:实验组分别在3、7和14 d的von Kossa钙盐染色结果
表2 大鼠骨髓间充质干细胞成骨相关基因mRNA表达水平的统计结果
图6 各组大鼠骨髓间充质干细胞成骨相关基因mRNA表达量 A:ALP(3 d);B:Lrp5(3 d);C:Sost(3 d);D:BMP2(10 d);E:Smad1(10 d);与对照组比较,aP<0.001
图7 各组大鼠骨髓间充质干细胞成骨相关蛋白表达量
[1]
Fatouros G. Is irisin the new player in exercise - induced adaptations or not?A 2017 update[J]. Clin Chem Lab Med, 2018, 56(4): 525-548. DOI: 10.1515/cclm-2017-0674.
[2]
Briganti SI, Gaspa G, Tabacco G, et al. Irisin as a regulator of bone and glucose metabolism[J]. Minerva Endocrinol, 2018, 43(4): 489-500. DOI: 10.23736/S0391-1977.17.02779-1.
[3]
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen - activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63(2): 514-525. DOI: 10.2337/db13-1106.
[4]
Albrecht E, Norheim F, Thiede B, et al. Irisin - a myth rather than an exercise - inducible myokine[J]. Sci Rep, 2015(5): 8889. DOI: 10.1038/srep08889.
[5]
Aydin S. Three new players in energy regulation: preptin, adropin and irisin[J]. Peptides, 2014(56): 94-110. DOI: 10.1016/j.peptides.2014.03.021.
[6]
Qin W, Sun Li, Cao J, et al. The central nervous system(CNS)- independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures[J]. J Biol Chem, 2013, 288(19): 13511-13521. DOI: 10.1074/jbc.M113.454892.
[7]
Colaianni G, Mongelli T, Colucci S, et al. Crosstalk Between Muscle and Bone Via the Muscle-Myokine Irisin[J]. Curr Osteoporos Rep, 2016, 14(4): 132-137. DOI: 10.1007/s11914-016-0313-4.
[8]
Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass[J]. Proc Natl Acad Sci USA, 2015, 1(12): 12157-12162. DOI: 10.1073/pnas.1516622112.
[9]
Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro[J]. Int J Endocrinol, 2014(2014): 902186. DOI: 10.1155/2014/902186.
[10]
Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health[J]. Ann N Y Acad Sci, 2017, 1402(1): 5-9. DOI: 10.1111/nyas.13345.
[11]
Zhang J, Valverde P, Zhu X, et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism[J]. Bone Res, 2017(5): 16056. DOI: 10.1038/boneres.2016.56.
[12]
Qiao X, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways[J]. Sci Rep, 2016, 6(1): 18732. DOI: 10.1038/srep18732.
[13]
Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair[J]. Nat Commun, 2016(7): 11505. DOI: 10.1038/ncomms11505.
[14]
Li G, Liu J, Zhao M, et al. SOST, an LNGFR target, inhibits the osteogenic differentiation of rat ectomesenchymal stem cells[J]. Cell Prolif, 2018, 51(2): e12412. DOI: 10.1111/cpr.12412.
[15]
Pflanz D, Birkhold AI, Albiol L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression[J]. Sci Rep, 2017, 7(1): 9435. DOI: 10.1038/s41598-017-09653-9.
[16]
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more[J]. Cell Mol Life Sci, 2015, 72(15): 2853-2867. DOI: 10.1007/s00018-015-1963-6.
[17]
Drake MT, Khosla S. Hormonal and systemic regulation of sclerostin[J]. Bone, 2017(96): 8-17. DOI: 10.1016/j.bone.2016.12.004.
[18]
Spatz JM, Wein MN, Gooi JH, et al. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro[J]. J Biol Chem, 2015, 290(27): 16744-16758. DOI: 10.1074/jbc.M114.628313.
[19]
Siegenthaler B, Ghayor C, Gjoksi-Cosandey B, et al. The Bromodomain Inhibitor N-Methyl pyrrolidone Prevents Osteoporosis and BMP-Triggered Sclerostin Expression in Osteocytes[J]. Int J Mol Sci, 2018, 19(11): 3332. DOI: 10.3390/ijms19113332.
[20]
Green DW, Kwon HJ, Jung HS, et al. Osteogenic potency of nacre on human mesenchymal stem cells[J]. Mol Cells, 2015, 38(3): 267-272. DOI: 10.14348/molcells.2015.2315.
[21]
Fonseca H, Moreira-Gonçalves D, Coriolano HJ, et al. Bone quality: the determinants of bone strength and fragility[J]. Sports Med, 2014, 44(1): 37-53. DOI: 10.1007/s40279-013-0100-7.
[22]
Aspray TJ, Hill TR. Osteoporosis and the Ageing Skeleton[J]. Subcell Biochem, 2019(91): 453-476. DOI: 10.1007/978-981-13-3681-2_16.
[23]
Bourhis E, Wang W, Tam C, et al. Wnt antagonists bind through a shon peptide to the first β-propeller domain of LRP5/6[J]. Structure, 201l, 19(10): 1433-42. DOI: 10.1016/j.str.2011.07.005.
[24]
Li GJ, Ding H, Miao D. Long-noncoding RNA HOTAIR inhibits immunologic rejection of mouse leukemia cells through activating the Wnt/β-catenin signaling pathway in a mouse model of leukemia[J]. J Cell Physiol, 2019, 234(7): 10386-10396. DOI: 10.1002/jcp.27705.
[1] 林健, 窦娟, 徐明华, 吴雅妮, 李曦洲, 陈静, 李恒宇. 岩鹿乳康对乳腺癌细胞的作用及其分子机制[J]. 中华乳腺病杂志(电子版), 2020, 14(02): 86-91.
[2] 陈伟玲, 张永渠, 李瑶琛, 黄文河, 张国君. Notch和Wnt信号通路及两者的交叉串话与乳腺癌发生、发展的关系[J]. 中华乳腺病杂志(电子版), 2019, 13(04): 245-248.
[3] 韩丽飞, 张亚男, 胡浩霖, 吕建鑫, 曹欣华. 三阴性乳腺癌发生机制的信号传导通路[J]. 中华乳腺病杂志(电子版), 2019, 13(02): 115-117.
[4] 凡军, 曹丽萍. 异鼠李素激活p38信号促进鼠间充质干细胞成骨分化[J]. 中华关节外科杂志(电子版), 2021, 15(04): 432-437.
[5] 刘鹏, 邓亚鹏, 曹国定, 高余, 封国超, 刘军, 甄平. 人工关节置换术后假体无菌性松动的研究进展[J]. 中华关节外科杂志(电子版), 2020, 14(03): 346-351.
[6] 葛于伟, 朱振安, 毛远青. 成骨与破骨细胞促红细胞生成素肝细胞受体B4/肝配蛋白B2双向信号通路[J]. 中华关节外科杂志(电子版), 2018, 12(03): 401-404.
[7] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[8] 伏洪玲, 刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 497-505.
[9] 蒋敏, 谢艳艳, 姚延娇, 卢丹. Notch信号通路与妊娠相关疾病发生与发展的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(05): 519-526.
[10] 马慧顺, 陈洪菊, 唐军. Sestrin2参与调控新生鼠缺氧缺血性脑损伤后细胞自噬机制[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(01): 32-41.
[11] 岳鹏, 华益民, 周开宇, 李一飞, 吴刚. 心脏发育及心脏病理性重构过程中YAP/TAZ介导的调控机制研究进展[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 103-108.
[12] 陈焘, 顾海涛. PI3K-Akt3信号通路在心脏发育中的作用[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(05): 606-610.
[13] 郭嘉瑜, 邱涛, 喻博. 泛素-蛋白酶体系统在肝缺血再灌注损伤中的研究进展[J]. 中华移植杂志(电子版), 2022, 16(01): 49-54.
[14] 梅艳, 朱凤阁, 朱晗玉, 段姝伟, 洪权, 马倩, 蔡广研, 陈香美. STAT3抑制剂S3I-201对实验性肾小管间质纤维化的保护作用[J]. 中华肾病研究电子杂志, 2018, 07(04): 167-171.
[15] 房修罗, 赵太云, 陆兴俊. 康复新液联合美沙拉嗪对溃疡性结肠炎活动期患者HMGB1、MCP-1、SOCS-3和Beclin1表达的影响[J]. 中华临床医师杂志(电子版), 2022, 16(03): 246-251.
阅读次数
全文


摘要