[1] |
Fatouros G. Is irisin the new player in exercise - induced adaptations or not?A 2017 update[J]. Clin Chem Lab Med, 2018, 56(4): 525-548. DOI: 10.1515/cclm-2017-0674.
|
[2] |
Briganti SI, Gaspa G, Tabacco G, et al. Irisin as a regulator of bone and glucose metabolism[J]. Minerva Endocrinol, 2018, 43(4): 489-500. DOI: 10.23736/S0391-1977.17.02779-1.
|
[3] |
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen - activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63(2): 514-525. DOI: 10.2337/db13-1106.
|
[4] |
Albrecht E, Norheim F, Thiede B, et al. Irisin - a myth rather than an exercise - inducible myokine[J]. Sci Rep, 2015(5): 8889. DOI: 10.1038/srep08889.
|
[5] |
|
[6] |
Qin W, Sun Li, Cao J, et al. The central nervous system(CNS)- independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures[J]. J Biol Chem, 2013, 288(19): 13511-13521. DOI: 10.1074/jbc.M113.454892.
|
[7] |
Colaianni G, Mongelli T, Colucci S, et al. Crosstalk Between Muscle and Bone Via the Muscle-Myokine Irisin[J]. Curr Osteoporos Rep, 2016, 14(4): 132-137. DOI: 10.1007/s11914-016-0313-4.
|
[8] |
Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass[J]. Proc Natl Acad Sci USA, 2015, 1(12): 12157-12162. DOI: 10.1073/pnas.1516622112.
|
[9] |
Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro[J]. Int J Endocrinol, 2014(2014): 902186. DOI: 10.1155/2014/902186.
|
[10] |
Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health[J]. Ann N Y Acad Sci, 2017, 1402(1): 5-9. DOI: 10.1111/nyas.13345.
|
[11] |
Zhang J, Valverde P, Zhu X, et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism[J]. Bone Res, 2017(5): 16056. DOI: 10.1038/boneres.2016.56.
|
[12] |
Qiao X, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways[J]. Sci Rep, 2016, 6(1): 18732. DOI: 10.1038/srep18732.
|
[13] |
Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair[J]. Nat Commun, 2016(7): 11505. DOI: 10.1038/ncomms11505.
|
[14] |
Li G, Liu J, Zhao M, et al. SOST, an LNGFR target, inhibits the osteogenic differentiation of rat ectomesenchymal stem cells[J]. Cell Prolif, 2018, 51(2): e12412. DOI: 10.1111/cpr.12412.
|
[15] |
Pflanz D, Birkhold AI, Albiol L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression[J]. Sci Rep, 2017, 7(1): 9435. DOI: 10.1038/s41598-017-09653-9.
|
[16] |
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more[J]. Cell Mol Life Sci, 2015, 72(15): 2853-2867. DOI: 10.1007/s00018-015-1963-6.
|
[17] |
|
[18] |
Spatz JM, Wein MN, Gooi JH, et al. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro[J]. J Biol Chem, 2015, 290(27): 16744-16758. DOI: 10.1074/jbc.M114.628313.
|
[19] |
Siegenthaler B, Ghayor C, Gjoksi-Cosandey B, et al. The Bromodomain Inhibitor N-Methyl pyrrolidone Prevents Osteoporosis and BMP-Triggered Sclerostin Expression in Osteocytes[J]. Int J Mol Sci, 2018, 19(11): 3332. DOI: 10.3390/ijms19113332.
|
[20] |
Green DW, Kwon HJ, Jung HS, et al. Osteogenic potency of nacre on human mesenchymal stem cells[J]. Mol Cells, 2015, 38(3): 267-272. DOI: 10.14348/molcells.2015.2315.
|
[21] |
Fonseca H, Moreira-Gonçalves D, Coriolano HJ, et al. Bone quality: the determinants of bone strength and fragility[J]. Sports Med, 2014, 44(1): 37-53. DOI: 10.1007/s40279-013-0100-7.
|
[22] |
|
[23] |
Bourhis E, Wang W, Tam C, et al. Wnt antagonists bind through a shon peptide to the first β-propeller domain of LRP5/6[J]. Structure, 201l, 19(10): 1433-42. DOI: 10.1016/j.str.2011.07.005.
|
[24] |
Li GJ, Ding H, Miao D. Long-noncoding RNA HOTAIR inhibits immunologic rejection of mouse leukemia cells through activating the Wnt/β-catenin signaling pathway in a mouse model of leukemia[J]. J Cell Physiol, 2019, 234(7): 10386-10396. DOI: 10.1002/jcp.27705.
|