切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 65 -70. doi: 10.3877/cma.j.issn.1674-1366.2019.02.001

所属专题: 口腔医学 文献

中青年专家笔谈

人源类器官的研究进展及在口腔医学的展望
谭汝铿1, 曾润玲1, 王卓然1, 徐萌1,()   
  1. 1. 中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2019-01-04 出版日期:2019-04-01
  • 通信作者: 徐萌

The research progress of human organoids and the prospects of application in stomatology

Rukeng Tan1, Runling Zeng1, Zhuoran Wang1, Meng Xu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
  • Received:2019-01-04 Published:2019-04-01
  • Corresponding author: Meng Xu
  • About author:
    Corresponding author: Xu Meng, Email:
  • Supported by:
    Project supported by The National Natural Science Funds(81602384); 2018 Teaching reform and teaching quality plan-undergraduate practice teaching base construction project—Stomatological undergraduate practice teaching base of Sun Yat-sen University(52000-31911004); 2017 Teaching reform and teaching quality plan of Sun Yat-sen University (The application of self-made cutting machine to make ground tooth section in oral pathology lab); National Undergraduate Students Innovation Training Program(201810558159)
引用本文:

谭汝铿, 曾润玲, 王卓然, 徐萌. 人源类器官的研究进展及在口腔医学的展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(02): 65-70.

Rukeng Tan, Runling Zeng, Zhuoran Wang, Meng Xu. The research progress of human organoids and the prospects of application in stomatology[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(02): 65-70.

类器官是指在体外三维培养构建的,依赖于人造细胞外基质的多细胞团,具有自我更新、自我组织能力,并维持了其来源组织的生理结构和功能。类器官作为一种新兴的研究模型,兼具细胞系和动物模型两者的优点。其构建材料简单、培养效率高、耗时短,在疾病研究模型构建、临床药敏试验和再生医学中有良好的应用前景。类器官模型主要分为三种细胞来源类型:胚胎干细胞/诱导多能干细胞、成体干细胞、肿瘤细胞。本文将重点介绍三种细胞来源类器官最新的研究进展,并展望其在口腔医学中的应用。

The organoid is a multicellular mass with the ability of self-renewal and self-organization in artificial extracellular matrix, which is constructed by three-dimensional culture in vitro, and it maintains the physiological structure and function of its source tissues. As a new research model, the organoid has the advantages of both cell lines and animal models. The easily material construction, high culturing efficiency and short time-consuming make it good application prospects in disease research model construction, clinical drug sensitivity test and regenerative medicine application. The organoid models can be divided into three types of cell sources: embryonic stem cells/induced pluripotent stem cells, adult stem cells and cancer cells. In this review, organoid from three cell sources will be elaborated separately, and mainly focused on the current status of human organoid research progress and the prospect of application in stomatology.

图1 胚胎干细胞、诱导性多能干细胞来源的类器官培养过程
图2 已成功构建的成体干细胞来源的类器官
表1 胚胎干细胞、诱导多能干细胞来源的类器官构建材料
组织类型 组织来源 胚层分化培养基 器官分化培养基 类器官生长培养基
[5] 人源胚胎干细胞和诱 导性多能干细胞 含有Activin A的RPMI 1640培 养基 含有成纤维细胞生长因子4、 CHIR99021的RPMI 1640培养基 含有表皮细胞生长因子、头蛋白、R-spondin1的高级DMEM/F12培养 基、Matrigel
[6] 人源胚胎干细胞和诱 导性多能干细胞系 含有Activin A、BMP4的RPMI 1640培养基 WNT3A、CHIR99021、成纤维细 胞生长因子4、头蛋白、维甲酸 的RPMI 1640培养基 含有表皮细胞生长因子、头蛋白、维 甲酸的高级DMEM/F12培养基、 Matrigel
肝脏[7] 人源胚胎干细胞和诱 导性多能干细胞系 含有Activin A、BMP4、CHIR 99021、成纤维细胞生长因子2、 LY294002的DMEM/F12培养基 含有成纤维细胞生长因子10、 BMP4的RPMI及B27培养基 含有肝细胞生长因子、抑瘤素M的高 级DMEM/F12培养基、Matrigel
[8] 人源胚胎干细胞和诱 导性多能干细胞系 含有endo-IWR1、LDN-193189、 SB431542、β-巯基乙醇的KSR培养基 含有NEAA、BDNF、GDNF的neurobasal-type differentiation培 养基、Matrigel DMEM/F12培养基、Matrigel
[9] 人源胚胎干细胞和诱 导性多能干细胞系 含有Activin的高级RPMI培养基 含有成纤维细胞生长因子9、 CHIR99021的高级RPMI培养基 含有CHIR99021、头蛋白、成纤维细胞 生长因子9的高级RPMI 1640培养基
[10] 人源胚胎干细胞系 含有Activin A、BMP4的DMEM/ F12培养基 含有成纤维细胞生长因子7,CHIR - 99021、维甲酸的DMEM/ F12培养基 DMEM/F12培养基、Matrigel
乳腺[11] 人源诱导性多能干细 胞系 complete MammoCult培养基 含有成纤维细胞生长因子10、肝 细胞生长因子、催乳素的EpiCult B培养基、Matrigel/CollagenⅠ 含有成纤维细胞生长因子10、肝细 胞生长因子的EpiCult B培养基、 Matrigel/CollagenⅠ
[1]
Sato T, Vries RG, Snippert HJ,et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature,2009,459(7244):262-265. DOI:10.1038/nature07935.
[2]
Barker N, van Es JH, Kuipers J,et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature,2007,449(7165):1003-1007. DOI:10.1038/nature06196.
[3]
Thomson JA, Itskovitz-Eldor J, Shapiro SS,et al. Embryonic stem cell lines derived from human blastocysts[J]. Science,2008,282(5391):1145-1147. DOI:10.1126/science.282.5391.1145.
[4]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676. DOI:10.1016/j.cell.2006.07.024.
[5]
Workman MJ, Mahe MM, Trisno S,et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system[J]. Nature Medicine,2016,23(1):49-59. DOI:10.1038/nm.4233.
[6]
McCracken KW, Catá EM, Crawford CM,et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature,2014,516(7531):400-404. DOI:10.1038/nature13863.
[7]
Guan Y, Xu D, Garfin PM,et al. Human hepatic organoids for the analysis of human genetic diseases[J]. JCI Insight,2017,2(17). DOI:10.1172/jci.insight.94954.
[8]
Li R, Sun L, Fang A,et al. Recapitulating cortical development with organoid culture in vitro,and modeling abnormal spindle-like(ASPM related primary)microcephaly disease[J]. Protein Cell,2017,8(11):823-833. DOI:10.1007/s13238-017-0479-2.
[9]
Morizane R, Lam AQ, Freedman BS,et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury[J]. Nature Biotechnology,2015,33(11):1193-1200. DOI:10.1038/nbt.3392.
[10]
Miller AJ, Hill DR, Nagy MS,et al. In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells[J]. Stem Cell Reports,2018,10(1):101-119. DOI:10.1016/j.stemcr.2017.11.012.
[11]
Ying Q, Han B, Gao B,et al. Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids[J]. Stem Cell Reports,2017,8(2):205-215. DOI:10.1016/j.stemcr.2016.12.023.
[12]
Finkbeiner SR, Hill DR, Altheim CH,et al. Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo[J]. Stem Cell Reports,2015,4(6):1140-1155. DOI:10.1016/j.stemcr.2015.04.010.
[13]
Bartfeld S, Bayram T, van de Wetering M,et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection[J]. Gastroenterology,2015,148(1):126-136.e6. DOI:10.1053/j.gastro.2014.09.042.
[14]
Huch M, Gehart H, van Boxtel R,et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell,2015,160(1-2):299-312. DOI:10.1016/j.cell.2014.11.050.
[15]
Karthaus WR, Iaquinta PJ, Drost J,et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell,2014,159(1):163-175. DOI:10.1016/j.cell.2014.08.017.
[16]
Broutier L, Andersson-Rolf A, Hindley CJ,et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation[J]. Nature Protocols,2016,11(9):1724-1743. DOI:10.1038/nprot.2016.097.
[17]
Loomans CJM, Williams Giuliani N, Balak J,et al. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential[J]. Stem Cell Reports,2018,10(3):712-724. DOI:10.1016/j.stemcr.2018.02.005.
[18]
Fulcher ML, Randell SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture[J]. Methods Mol Biol,2013(945):109-121. DOI:10.1007/978-1-62703-125-7_8.
[19]
Linnemann JR, Meixner LK, Miura H,et al. An Organotypic 3D Assay for Primary Human Mammary Epithelial Cells that Recapitulates Branching Morphogenesis[J]. Methods Mol Biol,2017(1612):125-137. DOI:10.1007/978-1-4939-7021-6_9.
[20]
Ozdemir T, Srinivasan PP, Zakheim DR,et al. Bottom-up assembly of salivary gland microtissues for assessing myoepithelial cell function[J]. Biomaterials,2017(142):124-135. DOI:10.1016/j.biomaterials.2017.07.022.
[21]
Srinivasan PP, Patel VN, Liu S,et al. Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture[J]. Stem Cells Translational Medicine,2017,6(1):110-120. DOI:10.5966/sctm.2016-0083.
[22]
Hisha H, Tanaka T, Kanno S,et al. Establishment of a Novel Lingual Organoid Culture System:Generation of Organoids Having Mature Keratinized Epithelium from Adult Epithelial Stem Cells[J]. Sci Rep,2013(3):3224. DOI:10.1038/srep03224.
[23]
Barbera M, di Pietro M, Walker E,et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation[J]. Gut,2015,64(1):11-19. DOI:10.1136/gutjnl-2013-306171.
[24]
Saito Y, Onishi N, Takami H,et al. Development of a functional thyroid model based on an organoid culture system[J]. Biochem Biophys Res Commun,2018,497(2):783-789. DOI:10.1016/j.bbrc.2018.02.154.
[25]
Kashfi SMH, Almozyan S, Jinks N,et al. Morphological alterations of cultured human colorectal matched tumour and healthy organoids[J]. Oncotarget,2018,9(12):10572-10584. DOI:10.18632/oncotarget.24279.
[26]
Seidlitz T, Merker SR, Rothe A,et al. Human gastric cancer modelling using organoids[J]. Gut,2019,68(2):207-217. DOI:1136/gutjnl-2017-314549.
[27]
Broutier L, Mastrogiovanni G, Verstegen MM,et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med,2017,23(12):1424-1435. DOI:10.1038/nm.4438.
[28]
Drost J, Karthaus WR, Gao D,et al. Organoid culture systems for prostate epithelial and cancer tissue[J]. Nat Protoc,2016,11(2):347-358. DOI:10.1038/nprot.2016.006.
[29]
Boj SF, Hwang CI, Baker LA,et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell,2015,160(1-2):324-338. DOI:10.1016/j.cell.2014.12.021.
[30]
Walsh AJ, Cook RS, Sanders ME,et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer[J]. Cancer Res,2014,74(18):5184-5194. DOI:10.1158/0008-5472.CAN-14-0663.
[31]
Sachs N, Ligt JD, Kopper O,et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity[J]. Cell,2017,172(1-2):373. DOI:10.1016/j.cell.2017.11.010.
[32]
Shah AT, Heaster TM, Skala MC. Metabolic Imaging of Head and Neck Cancer Organoids[J]. PLoS ONE,2017,12(1):e0170415. DOI:10.1371/journal.pone.0170415.
[33]
Nusse R, Clevers H. Wnt/β-Catenin Signaling,Disease,and Emerging Therapeutic Modalities[J]. Cell,2017,169(6):985-999. DOI:10.1016/j.cell.2017.05.016
[34]
Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2018,373(1750):20170217. DOI:10.1098/rstb.2017.0217.
[35]
Lin LM, Bill K. A review of regenerative endodontics:current protocols and future directions[J]. J Istanb Univ Fac Dent,2017,51(3 Suppl 1):S41-S51. DOI:10.17096/jiufd.53911.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[4] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[5] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[6] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[10] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[11] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[12] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
阅读次数
全文


摘要