切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 383 -388. doi: 10.3877/cma.j.issn.1674-1366.2018.06.011

所属专题: 口腔医学 文献

综述

mTORC1/2信号通路在肿瘤治疗中的应用
史善伟1, 许宝山1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-05-09 出版日期:2018-12-01
  • 通信作者: 许宝山
  • 基金资助:
    国家自然科学基金(81771056)

MTORC1/2 signaling pathway in cancer research

Shanwei Shi1, Baoshan Xu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-05-09 Published:2018-12-01
  • Corresponding author: Baoshan Xu
  • About author:
    Corresponding author: Xu Baoshan, Email:
引用本文:

史善伟, 许宝山. mTORC1/2信号通路在肿瘤治疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 383-388.

Shanwei Shi, Baoshan Xu. MTORC1/2 signaling pathway in cancer research[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(06): 383-388.

哺乳动物雷帕霉素靶蛋白(mTOR)是PI3K-Akt信号传导通路的重要下游蛋白激酶。真核生物的mTOR被体内的生长因子、营养及能量等信号激活后,能加速细胞内蛋白质的合成,为肿瘤细胞的生长提供物质基础,所以mTOR通路是治疗癌症的重要靶点。雷帕霉素(西罗莫司)及其衍生物对mTOR具有特异性抑制作用,在临床上被用于多种癌症的治疗。由于肿瘤的高度异质性和复杂性,一些肿瘤对mTOR抑制剂具有耐药性。因此,充分了解mTOR通路对肿瘤增殖和生存的作用机制,对进一步提高肿瘤疗效具有重要意义。

Mammalian target of rapamycin (mTOR) is a critical effective protein in the downstream of PI3K-Akt pathway. When activated by growth factors, nutrition or energy signals in eukaryotes, mTOR can accelerate the synthesis of protein, which is beneficial to the growth of tumor cells. Thus, mTOR is an important target of cancer treatment. Rapamycin (Sirolimus) and its analogues have specific inhibitory effects on mTOR and are used in clinical treatment of many types of cancer. Due to the high heterogeneity and complexity of tumors, some show resistance to mTOR inhibitors. Therefore, it is of great significance to understand the mechanism of mTOR pathway in tumor proliferation and survival, and to further improve the treatment efficacy.

[1]
Chiang GG, Abraham RT. Determination of the catalytic activities of mTOR and other members of the phosphoinositide-3-kinase-related kinase family [J]. Methods Mol Biol, 2004(281):125-141.
[2]
Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing [J]. Nat Rev Mol Cell Biol, 2011, 12(1):21-35.
[3]
Brown MC, Gromeier M. MNK inversely regulates TELO2 vs. DEPTOR to control mTORC1 signaling [J]. Mol Cell Oncol, 2017, 4(3):e1306010.
[4]
Liu P, Gan W, Chin YR, et al. PtdIns(3, 4, 5)P3-Dependent Activation of the mTORC2 Kinase Complex [J]. Cancer Discov, 2015, 5(11):1194-1209.
[5]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease [J]. Cell, 2012, 149(2):274-293.
[6]
Nasr AB, Ponnala D, Sagurthi SR, et al. Molecular Docking studies of FKBP12-mTOR inhibitors using binding predictions [J]. Bioinformation, 2015, 11(6):307-315.
[7]
Schreiber KH, Ortiz D, Academia EC, et al. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins [J]. Aging Cell, 2015, 14(2):265-273.
[8]
Khan KH, Yap TA, Yan L, et al. Targeting the PI3K-AKT-mTOR signaling network in cancer [J]. Chin J Cancer, 2013, 32(5):253-265.
[9]
Gowans GJ. Regulation and role of the LKB1-AMPK pathway [D]. Dundee:University of Dundee, 2014.
[10]
Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis [J]. Adv Cancer Res, 2009, 102(1):19-65.
[11]
Yuan TL, Cantley LC. PI3K pathway alterations in cancer:variations on a theme [J]. Oncogene, 2008, 27(41):5497-5510.
[12]
Foukas LC, Berenjeno IM, Gray A, et al. Activity of any class IA PI3K isoform can sustain cell proliferation and survival [J]. Proc Natl Acad Sci U S A, 2010, 107(25):11381-11386.
[13]
McGlade CJ, Ellis C, Reedijk M, et al. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors [J]. Mol Cell Biol, 1992, 12(3):991-997.
[14]
Balendran A, Casamayor A, Deak M, et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J]. Curr Biol, 1999, 9(8):393-404.
[15]
Leslie NR, Batty IH, Maccario H, et al. Understanding PTEN regulation:PIP2, polarity and protein stability [J]. Oncogene, 2008, 27(41):5464-5476.
[16]
Lin HP, Lin CY, Huo C, et al. Akt3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2[J]. Oncotarget, 2015, 6(29):27097-27112.
[17]
Dibble CC, Elis W, Menon S, et al. TBC1D7 Is a third subunit of the TSC1-TSC2 complex upstream of mTORC1 [J]. Mol Cell, 2012, 47(4):535-546.
[18]
Yoshida S, Hong S, Suzuki T, et al. Redox regulates mammalian target of rapamycin complex 1(mTORC1)activity by modulating the TSC1/TSC2-Rheb GTPase pathway [J]. J Biol Chem, 2011, 286(37):32651-32660.
[19]
Mohan N, Shen Y, Dokmanovic M, et al. VPS34 regulates TSC1/TSC2 heterodimer to mediate RheB and mTORC1/S6K1 activation and cellular transformation [J]. Oncotarget, 2016, 7(32):52239-52254.
[20]
Han D, Li SJ, Zhu YT, et al. LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer [J]. Asian Pac J Cancer Prev, 2013, 14(7):4033-4099.
[21]
Mirouse V, Swick LL, Kazgan N, et al. LKB1 and AMPK maintain epithelial cell polarity under energetic stress [J]. J Cell Biol, 2013, 203(2):387-392.
[22]
Hardie DG, Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle [J]. Physiology(Bethesda), 2006(21):48-60.
[23]
Green AS, Chapuis N, Lacombe C, et al. LKB1/AMPK/mTOR signaling pathway in hematological malignancies:from metabolism to cancer cell biology [J]. Cell Cycle, 2011, 10(13):2115-2120.
[24]
Wang W, Guan KL. AMP-activated protein kinase and cancer [J]. Acta Physiol(Oxf), 2009, 196(1):55-63.
[25]
Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3 [J]. Oncogene, 2015, 34(17):2239-2250.
[26]
Jevtov I, Zacharogianni M, Oorschot MM, et al. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules [J]. J Cell Sci, 2015, 128(14):2497-2508.
[27]
Iadevaia V, Liu R, Proud CG. mTORC1 signaling controls multiple steps in ribosome biogenesis [J]. Semin Cell Dev Biol, 2014(36):113-120.
[28]
Yuan L, Sheng X, Willson AK, et al. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway [J]. Endocr Relat Cancer, 2015, 22(4):577-591.
[29]
Vikhreva PN, Shepelev MV, Korobko IV. mTOR-dependent transcriptional repression of Pdcd4 tumor suppressor in lung cancer cells [J]. Biochim Biophys Acta, 2014, 1839(1):43-49.
[30]
Csibi A, Lee G, Yoon SO, et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation [J]. Curr Biol, 2014, 24(19):2274-2280.
[31]
Dan HC, Antonia RJ, Baldwin AS. PI3K/Akt promotes feedforward mTORC2 activation through IKKα [J]. Oncotarget, 2016, 7(16):21064-21075.
[32]
Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome [J]. Cell, 2011, 144(5):757.
[33]
Oh WJ, Wu CC, Kim SJ, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide [J]. EMBO J, 2010, 29(23):3939-3951.
[34]
Renna M, Bento CF, Fleming A, et al. IGF-1 receptor antagonism inhibits autophagy [J]. Hum Mol Genet, 2013, 22(22):4528-4544.
[35]
Liu P, Gan W, Inuzuka H, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis [J]. Nat Cell Biol, 2013, 15(11):1340-1350.
[36]
Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor [J]. Cancer Res, 2007, 67(24):11712-11720.
[37]
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer [J]. Cancer Cell, 2007, 12(1):9-22.
[38]
Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation [J]. Mutagenesis, 2015, 30(2):169-176.
[39]
Karthik GM, Ma R, Lövrot J, et al. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells [J]. Cancer Lett, 2015, 367(1):76-87.
[40]
Caron A, Richard D, Laplante M. The Roles of mTOR Complexes in Lipid Metabolism [J]. Annu Rev Nutr, 2015(35):321-348.
[41]
Shor B, Gibbons JJ, Abraham RT, et al. Targeting mTOR globally in cancer:thinking beyond rapamycin [J]. Cell Cycle, 2009, 8(23):3831-3837.
[42]
Chatterjee A. Control of cell cycle progression by mTOR [D]. New York:City University of New York, 2015.
[43]
Teo T, Yu M, Yang Y, et al. Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells [J]. Cancer Lett, 2015, 357(2):612-623.
[44]
Feng L, Balakir R, Precht P, et al. Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis [J]. J Cell Biochem, 2015, 74(4):576-586.
[45]
Zhou FF, Yan M, Guo GF, et al. Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells [J]. Med Oncol, 2011, 28(4):1302-1307.
[46]
Harada H, Andersen JS, Mann M, et al. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD [J]. Proc Natl Acad Sci U S A, 2001, 98(17):9666-9670.
[47]
Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation [J]. Cell, 2005, 120(6):747-759.
[48]
Kenific CM, Debnath J. Cellular and metabolic functions for autophagy in cancer cells [J]. Trends Cell Biol, 2015, 25(1):37-45.
[49]
Jiang X, Overholtzer M, Thompson CB. Autophagy in cellular metabolism and cancer [J]. J Clin Invest, 2015, 125(1):47-54.
[50]
Chan EY. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex [J]. Sci Signal, 2009, 2(84):pe51.
[51]
Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy [J]. FEBS Lett, 2010, 584(7):1287-1295.
[52]
Easton JB, Houghton PJ. mTOR and cancer therapy [J]. Oncogene, 2006, 25(48):6436-6446.
[53]
Ortolani S, Ciccarese C, Cingarlini S, et al. Suppression of mTOR pathway in solid tumors:lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives [J]. Future Oncol, 2015, 11(12):1809-1828.
[54]
Sapienza PJ, Mauldin RV, Lee AL. Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate [J]. J Mol Biol, 2011, 405(2):378-394.
[55]
O'reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt [J]. Cancer Res, 2006, 66(3):1500-1508.
[56]
Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway:the second generation of inhibitors [J]. Mol Cancer Ther, 2011, 10(3):395-403.
[57]
Neil J, Shannon C, Mohan A, et al. ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma [J]. International Journal of Oncology, 2016, 48(3):1045-1052.
[58]
Ma BB, Lui VW, Hui CW, et al. Preclinical evaluation of the mTOR-PI3K inhibitor BEZ235 in nasopharyngeal cancer models [J]. Cancer Lett, 2014, 343(1):24-32.
[59]
Gupta M, Hendrickson AE, Yun SS, et al. Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies [J]. Blood, 2012, 119(2):476-487.
[60]
Wu S, Wang S, Zheng S, et al. MSK1-mediated β-catenin phosphorylation confers resistance to PI3K/mTOR inhibitors in glioblastoma[J]. Mol Cancer Ther, 2016, 15(7):1656-1668.
[61]
Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas [J]. Cancer Cell, 2015, 27(4):533-546.
[62]
Li T, Yang Y, Li X, et al. EGFR- and AKT-mediated reduction in PTEN expression contributes to tyrphostin resistance and is reversed by mTOR inhibition in endometrial cancer cells [J]. Mol Cell Biochem, 2012, 361(1-2):19-29.
[63]
Odaka Y, Xu B, Luo Y, et al. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells [J]. Carcinogenesis, 2014, 35(1):192-200.
[64]
Zhou H, Shang C, Wang M, et al. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK [J]. Biochem Pharmacol, 2016(116):39-50.
[65]
Chen W, Luo Y, Liu L, et al. Cryptotanshinone inhibits cancer cell proliferation by suppressing mTOR-mediated cyclin D1 expression and Rb phosphorylation [J]. Cancer Prev Res(Phila), 2010, 3(8):1015-1025.
[66]
Beevers CS, Li F, Liu L, et al. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells [J]. Int J Cancer, 2006, 119(4):757-764.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要