切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (06) : 383 -388. doi: 10.3877/cma.j.issn.1674-1366.2018.06.011

所属专题: 口腔医学 文献

综述

mTORC1/2信号通路在肿瘤治疗中的应用
史善伟1, 许宝山1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-05-09 出版日期:2018-12-01
  • 通信作者: 许宝山
  • 基金资助:
    国家自然科学基金(81771056)

MTORC1/2 signaling pathway in cancer research

Shanwei Shi1, Baoshan Xu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-05-09 Published:2018-12-01
  • Corresponding author: Baoshan Xu
  • About author:
    Corresponding author: Xu Baoshan, Email:
引用本文:

史善伟, 许宝山. mTORC1/2信号通路在肿瘤治疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 383-388.

Shanwei Shi, Baoshan Xu. MTORC1/2 signaling pathway in cancer research[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(06): 383-388.

哺乳动物雷帕霉素靶蛋白(mTOR)是PI3K-Akt信号传导通路的重要下游蛋白激酶。真核生物的mTOR被体内的生长因子、营养及能量等信号激活后,能加速细胞内蛋白质的合成,为肿瘤细胞的生长提供物质基础,所以mTOR通路是治疗癌症的重要靶点。雷帕霉素(西罗莫司)及其衍生物对mTOR具有特异性抑制作用,在临床上被用于多种癌症的治疗。由于肿瘤的高度异质性和复杂性,一些肿瘤对mTOR抑制剂具有耐药性。因此,充分了解mTOR通路对肿瘤增殖和生存的作用机制,对进一步提高肿瘤疗效具有重要意义。

Mammalian target of rapamycin (mTOR) is a critical effective protein in the downstream of PI3K-Akt pathway. When activated by growth factors, nutrition or energy signals in eukaryotes, mTOR can accelerate the synthesis of protein, which is beneficial to the growth of tumor cells. Thus, mTOR is an important target of cancer treatment. Rapamycin (Sirolimus) and its analogues have specific inhibitory effects on mTOR and are used in clinical treatment of many types of cancer. Due to the high heterogeneity and complexity of tumors, some show resistance to mTOR inhibitors. Therefore, it is of great significance to understand the mechanism of mTOR pathway in tumor proliferation and survival, and to further improve the treatment efficacy.

[1]
Chiang GG, Abraham RT. Determination of the catalytic activities of mTOR and other members of the phosphoinositide-3-kinase-related kinase family [J]. Methods Mol Biol, 2004(281):125-141.
[2]
Zoncu R, Efeyan A, Sabatini DM. mTOR:from growth signal integration to cancer, diabetes and ageing [J]. Nat Rev Mol Cell Biol, 2011, 12(1):21-35.
[3]
Brown MC, Gromeier M. MNK inversely regulates TELO2 vs. DEPTOR to control mTORC1 signaling [J]. Mol Cell Oncol, 2017, 4(3):e1306010.
[4]
Liu P, Gan W, Chin YR, et al. PtdIns(3, 4, 5)P3-Dependent Activation of the mTORC2 Kinase Complex [J]. Cancer Discov, 2015, 5(11):1194-1209.
[5]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease [J]. Cell, 2012, 149(2):274-293.
[6]
Nasr AB, Ponnala D, Sagurthi SR, et al. Molecular Docking studies of FKBP12-mTOR inhibitors using binding predictions [J]. Bioinformation, 2015, 11(6):307-315.
[7]
Schreiber KH, Ortiz D, Academia EC, et al. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins [J]. Aging Cell, 2015, 14(2):265-273.
[8]
Khan KH, Yap TA, Yan L, et al. Targeting the PI3K-AKT-mTOR signaling network in cancer [J]. Chin J Cancer, 2013, 32(5):253-265.
[9]
Gowans GJ. Regulation and role of the LKB1-AMPK pathway [D]. Dundee:University of Dundee, 2014.
[10]
Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis [J]. Adv Cancer Res, 2009, 102(1):19-65.
[11]
Yuan TL, Cantley LC. PI3K pathway alterations in cancer:variations on a theme [J]. Oncogene, 2008, 27(41):5497-5510.
[12]
Foukas LC, Berenjeno IM, Gray A, et al. Activity of any class IA PI3K isoform can sustain cell proliferation and survival [J]. Proc Natl Acad Sci U S A, 2010, 107(25):11381-11386.
[13]
McGlade CJ, Ellis C, Reedijk M, et al. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors [J]. Mol Cell Biol, 1992, 12(3):991-997.
[14]
Balendran A, Casamayor A, Deak M, et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J]. Curr Biol, 1999, 9(8):393-404.
[15]
Leslie NR, Batty IH, Maccario H, et al. Understanding PTEN regulation:PIP2, polarity and protein stability [J]. Oncogene, 2008, 27(41):5464-5476.
[16]
Lin HP, Lin CY, Huo C, et al. Akt3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2[J]. Oncotarget, 2015, 6(29):27097-27112.
[17]
Dibble CC, Elis W, Menon S, et al. TBC1D7 Is a third subunit of the TSC1-TSC2 complex upstream of mTORC1 [J]. Mol Cell, 2012, 47(4):535-546.
[18]
Yoshida S, Hong S, Suzuki T, et al. Redox regulates mammalian target of rapamycin complex 1(mTORC1)activity by modulating the TSC1/TSC2-Rheb GTPase pathway [J]. J Biol Chem, 2011, 286(37):32651-32660.
[19]
Mohan N, Shen Y, Dokmanovic M, et al. VPS34 regulates TSC1/TSC2 heterodimer to mediate RheB and mTORC1/S6K1 activation and cellular transformation [J]. Oncotarget, 2016, 7(32):52239-52254.
[20]
Han D, Li SJ, Zhu YT, et al. LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer [J]. Asian Pac J Cancer Prev, 2013, 14(7):4033-4099.
[21]
Mirouse V, Swick LL, Kazgan N, et al. LKB1 and AMPK maintain epithelial cell polarity under energetic stress [J]. J Cell Biol, 2013, 203(2):387-392.
[22]
Hardie DG, Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle [J]. Physiology(Bethesda), 2006(21):48-60.
[23]
Green AS, Chapuis N, Lacombe C, et al. LKB1/AMPK/mTOR signaling pathway in hematological malignancies:from metabolism to cancer cell biology [J]. Cell Cycle, 2011, 10(13):2115-2120.
[24]
Wang W, Guan KL. AMP-activated protein kinase and cancer [J]. Acta Physiol(Oxf), 2009, 196(1):55-63.
[25]
Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3 [J]. Oncogene, 2015, 34(17):2239-2250.
[26]
Jevtov I, Zacharogianni M, Oorschot MM, et al. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules [J]. J Cell Sci, 2015, 128(14):2497-2508.
[27]
Iadevaia V, Liu R, Proud CG. mTORC1 signaling controls multiple steps in ribosome biogenesis [J]. Semin Cell Dev Biol, 2014(36):113-120.
[28]
Yuan L, Sheng X, Willson AK, et al. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway [J]. Endocr Relat Cancer, 2015, 22(4):577-591.
[29]
Vikhreva PN, Shepelev MV, Korobko IV. mTOR-dependent transcriptional repression of Pdcd4 tumor suppressor in lung cancer cells [J]. Biochim Biophys Acta, 2014, 1839(1):43-49.
[30]
Csibi A, Lee G, Yoon SO, et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation [J]. Curr Biol, 2014, 24(19):2274-2280.
[31]
Dan HC, Antonia RJ, Baldwin AS. PI3K/Akt promotes feedforward mTORC2 activation through IKKα [J]. Oncotarget, 2016, 7(16):21064-21075.
[32]
Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome [J]. Cell, 2011, 144(5):757.
[33]
Oh WJ, Wu CC, Kim SJ, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide [J]. EMBO J, 2010, 29(23):3939-3951.
[34]
Renna M, Bento CF, Fleming A, et al. IGF-1 receptor antagonism inhibits autophagy [J]. Hum Mol Genet, 2013, 22(22):4528-4544.
[35]
Liu P, Gan W, Inuzuka H, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis [J]. Nat Cell Biol, 2013, 15(11):1340-1350.
[36]
Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor [J]. Cancer Res, 2007, 67(24):11712-11720.
[37]
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer [J]. Cancer Cell, 2007, 12(1):9-22.
[38]
Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation [J]. Mutagenesis, 2015, 30(2):169-176.
[39]
Karthik GM, Ma R, Lövrot J, et al. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells [J]. Cancer Lett, 2015, 367(1):76-87.
[40]
Caron A, Richard D, Laplante M. The Roles of mTOR Complexes in Lipid Metabolism [J]. Annu Rev Nutr, 2015(35):321-348.
[41]
Shor B, Gibbons JJ, Abraham RT, et al. Targeting mTOR globally in cancer:thinking beyond rapamycin [J]. Cell Cycle, 2009, 8(23):3831-3837.
[42]
Chatterjee A. Control of cell cycle progression by mTOR [D]. New York:City University of New York, 2015.
[43]
Teo T, Yu M, Yang Y, et al. Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells [J]. Cancer Lett, 2015, 357(2):612-623.
[44]
Feng L, Balakir R, Precht P, et al. Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis [J]. J Cell Biochem, 2015, 74(4):576-586.
[45]
Zhou FF, Yan M, Guo GF, et al. Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells [J]. Med Oncol, 2011, 28(4):1302-1307.
[46]
Harada H, Andersen JS, Mann M, et al. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD [J]. Proc Natl Acad Sci U S A, 2001, 98(17):9666-9670.
[47]
Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation [J]. Cell, 2005, 120(6):747-759.
[48]
Kenific CM, Debnath J. Cellular and metabolic functions for autophagy in cancer cells [J]. Trends Cell Biol, 2015, 25(1):37-45.
[49]
Jiang X, Overholtzer M, Thompson CB. Autophagy in cellular metabolism and cancer [J]. J Clin Invest, 2015, 125(1):47-54.
[50]
Chan EY. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex [J]. Sci Signal, 2009, 2(84):pe51.
[51]
Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy [J]. FEBS Lett, 2010, 584(7):1287-1295.
[52]
Easton JB, Houghton PJ. mTOR and cancer therapy [J]. Oncogene, 2006, 25(48):6436-6446.
[53]
Ortolani S, Ciccarese C, Cingarlini S, et al. Suppression of mTOR pathway in solid tumors:lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives [J]. Future Oncol, 2015, 11(12):1809-1828.
[54]
Sapienza PJ, Mauldin RV, Lee AL. Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate [J]. J Mol Biol, 2011, 405(2):378-394.
[55]
O'reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt [J]. Cancer Res, 2006, 66(3):1500-1508.
[56]
Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway:the second generation of inhibitors [J]. Mol Cancer Ther, 2011, 10(3):395-403.
[57]
Neil J, Shannon C, Mohan A, et al. ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma [J]. International Journal of Oncology, 2016, 48(3):1045-1052.
[58]
Ma BB, Lui VW, Hui CW, et al. Preclinical evaluation of the mTOR-PI3K inhibitor BEZ235 in nasopharyngeal cancer models [J]. Cancer Lett, 2014, 343(1):24-32.
[59]
Gupta M, Hendrickson AE, Yun SS, et al. Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies [J]. Blood, 2012, 119(2):476-487.
[60]
Wu S, Wang S, Zheng S, et al. MSK1-mediated β-catenin phosphorylation confers resistance to PI3K/mTOR inhibitors in glioblastoma[J]. Mol Cancer Ther, 2016, 15(7):1656-1668.
[61]
Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas [J]. Cancer Cell, 2015, 27(4):533-546.
[62]
Li T, Yang Y, Li X, et al. EGFR- and AKT-mediated reduction in PTEN expression contributes to tyrphostin resistance and is reversed by mTOR inhibition in endometrial cancer cells [J]. Mol Cell Biochem, 2012, 361(1-2):19-29.
[63]
Odaka Y, Xu B, Luo Y, et al. Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells [J]. Carcinogenesis, 2014, 35(1):192-200.
[64]
Zhou H, Shang C, Wang M, et al. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK [J]. Biochem Pharmacol, 2016(116):39-50.
[65]
Chen W, Luo Y, Liu L, et al. Cryptotanshinone inhibits cancer cell proliferation by suppressing mTOR-mediated cyclin D1 expression and Rb phosphorylation [J]. Cancer Prev Res(Phila), 2010, 3(8):1015-1025.
[66]
Beevers CS, Li F, Liu L, et al. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells [J]. Int J Cancer, 2006, 119(4):757-764.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[4] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[5] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[6] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[7] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[10] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[11] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[12] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
阅读次数
全文


摘要