切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 278 -284. doi: 10.3877/cma.j.issn.1674-1366.2018.05.003

所属专题: 文献

基础研究

不同固位形磨牙双端粘接桥的有限元分析及抗脱位力比较
陈枝沛1, 黄静燕1, 张辉1, 张新春1, 黄沁1, 王焱1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2018-04-08 出版日期:2018-10-01
  • 通信作者: 王焱
  • 基金资助:
    广东省医学科学技术研究基金(200001)

Three dimensional finite element analysis and dislocation-resistance force comparison of molar resin-boned fixed partial dentures with different retention forms

Zhipei Chen1, Jingyan Huang1, Hui Zhang1, Xinchun Zhang1, Qin Huang1, Yan Wang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2018-04-08 Published:2018-10-01
  • Corresponding author: Yan Wang
  • About author:
    Corresponding author: Wang Yan, Email:
引用本文:

陈枝沛, 黄静燕, 张辉, 张新春, 黄沁, 王焱. 不同固位形磨牙双端粘接桥的有限元分析及抗脱位力比较[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 278-284.

Zhipei Chen, Jingyan Huang, Hui Zhang, Xinchun Zhang, Qin Huang, Yan Wang. Three dimensional finite element analysis and dislocation-resistance force comparison of molar resin-boned fixed partial dentures with different retention forms[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(05): 278-284.

目的

分析4种不同固位形的磨牙双端粘接桥的修复体、基牙的应力分布及位移变化,并研究不同粘接桥的抗脱位力差别。

方法

在右下第一磨牙缺失牙列标准模型上按舌侧翼板形(A组)、D形固位形(B组)、应力中断形(C组)、支托固位形(D组)4种粘接桥设计的牙体预备标准进行牙体预备,每组制作6个钴铬合金金属烤瓷粘接桥,树脂粘接剂粘接。其中每组1个试件用于有限元扫描建模,采用Micro-CT扫描技术及Mimics软件建立三维有限元模型,导入Ansys有限元软件内并对其网格划分。在4组模型的桥体上加载100 N的垂直与斜向45°的载荷,观察并计算应力分布及位移情况。另外每组5个试件在万能测试机上行拉力实验,记录粘接桥抗脱位力值并统计学分析。

结果

垂直载荷时C组修复体应力峰值最小,为37.5 MPa(P<0.05);A组基牙应力峰值最小,为14.5 MPa(P<0.05);A组修复体位移量变化最小,为3.80 μm(P<0.05);C组基牙位移量变化最小,为3.72 μm(P<0.05)。斜向载荷时C组修复体和基牙应力峰值最小,为74.3、19.8 MPa(P<0.05);D组修复体和基牙位移量变化最小,为1.69、1.62 μm(P>0.05)。4组间von Mises应力比较差异有统计学意义,位移量变化比较差异无统计学意义。B与D组组间抗脱位力值差异没有统计学意义,其余组间差异均有统计学意义(F = 25.840,P<0.001)。

结论

应力中断形粘接桥能有效降低修复体与基牙所受应力,但该固位形的抗脱位力较低。D形固位形和支托固位形粘接桥的固位形设计能将垂直或侧向力传递、分散至基牙,且抗脱位力较高。

Objective

To study and compare the stress distribution and displacement of the abutments and prostheses as well as the dislocation-resistance force of resin-bonded fixed bridges with four different retention form designs.

Methods

Four groups of resin-boned bridges teeth preparation were made according to the standard of each design on the right first mandibular molar missing arch models, namely traditional lingual flank wingplate retention group (Group A) , D-shaped retention group (Group B) , stress interrupt retention group (Group C) and occlusal rest retention group (Group D) . Prostheses were fabricated with cobalt-chromium alloy and bonded with resin cement on the models, six for each group. Three-dimensional finite element models were established for each group with the aids of Micro-CT scanning technology and Mimics software. The grid partition, boundary condition and load were introduced into Ansys software. 100 N load was applied on the pontic of the resin-bonded bridges vertically and 45-degree obliquely. The stress distribution and displacement of the abutments and prostheses were observed and calculated on the universal testing machine. Tensile test was carried out by pulling out the prosthesis from the abutments. The dislocation resistance values were calculated and analyzed statistically.

Results

With vertical load, the minimum stress of prosthesis (37.45 MPa, P<0.05) and the minimum abutments displacement (3.72 μm, P<0.05) were found in group C; the minimum stress of abutments (14.54 MPa, P<0.05) and the minimum prosthesis displacement (3.80 μm, P<0.05) were found in group A. With oblique load, the minimum stress of prosthesis and abutments was observed in group C (74.30, 19.84 MPa, P<0.05) ; the minimum prosthesis and abutments displacement was observed in group D (1.69, 1.62 μm, P<0.05) . The comparison of von Mises stress was significant different (P<0.05) while the displacement was not (P>0.05) . The dislocation force value was 393.16, 427.62, 339.62, 449.84 N, respectively. There was significant difference among the four groups (F=25.840, P<0.001) , but no statistically significant difference was observed between Group B and D.

Conclusions

The resin-bonded bridge with stress-interruption design may effectively reduce the stress of prosthesis and abutment, but the dislocation resistance capability was lower than that of the other groups. The design of D-shaped retention and occlusion rest retention of resin-bonded bridge can distribute the vertical or oblique stress to prosthesis and abutment, and the dislocation resistance value was higher than those of the rest.

表1 实验所用主要仪器和设备
图1 4种固位形粘接桥蜡型图
图2 4种固位形粘接桥三维有限元模型图
表2 不同固位形粘接桥有限元模型的节点和单元总数
表3 有限元模型中各组件的弹性力学参数
图3 拉伸实验模型装置示意图
图4 4种固位形垂直载荷下修复体von Mises应力分布
图5 4种固位形斜向载荷下修复体von Mises应力分布
图6 4种固位形垂直载荷下基牙von Mises应力分布
图7 4种固位形斜向载荷下基牙von Mises应力分布
表4 垂直和斜向载荷100 N下修复体及基牙的von Mises应力峰值(MPa, ± s
表5 垂直和斜向载荷100 N下修复体及基牙的最大位移量(μm, ± s
图8 4组固位形磨牙双端粘接桥抗脱位力值比较
表6 4组固位形粘接桥抗力值比较(N, ± s
[1]
Wyatt CC. Resin-bonded fixed partial dentures:what′s new?[J]. J Can Dent Assoc,2007,73(10):933-938.
[2]
Dayanik S. Resin-Bonded Bridges—Can We Cement Them 'High’?[J]. Dent Update,2016,43(3):243-244,247-250,253.
[3]
Miettinen M,Millar BJ. A review of the success and failure characteristics of resin-bonded bridges[J]. Br Dent J,2013,215(2):E3.
[4]
Wei YR,Wang XD,Zhang Q,et al. Clinical performance of anterior resin-bonded fixed dental prostheses with different framework designs:A systematic review and meta-analysis[J]. J Dent,2016(47):1-7.
[5]
Nemoto R,Nozaki K,Fukui Y,et al. Effect of framework design on the surface strain of zirconia fixed partial dentures[J]. Dent Mater J,2013,32(2):289-295.
[6]
Zitzmann NU,Özcan M,Scherrer SS,et al. Resin-bonded restorations:a strategy for managing anterior tooth loss in adolescence[J]. J Prosthet Dent,2015,113(4):270-276.
[7]
Monaco C. A clinical case report on indirect,posterior three-unit resin-bonded FRC FPD[J]. J Adhes Dent,2012,14(5):479-483.
[8]
Keulemans F,Shinya A,Lassila LV,et al. Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses[J]. Scientific World Journal,2015:864389.
[9]
Thoma DS,Sailer I,Ioannidis A,et al. A systematic review of the survival and complication rates of resin-bonded fixed dental prostheses after a mean observation period of at least 5 years[J]. Clin Oral Implants Res,2017,28(11):1421-1432.
[10]
Lin J,Zheng Z,Shinya A,et al. Structural stability of posterior retainer design for resin-bonded prostheses:a 3D finite element study[J]. Odontology,2015,103(3):333-338.
[11]
Arora V,Sharma MC,Dwivedi R. Comparative evaluation of retentive properties of acid etched resin bonded fixed partial dentures[J]. Med J Armed Forces India,2014,70(1):53-57.
[12]
Botelho MG,Dyson JE. Long-span,fixed-movable,resin-bonded fixed partial dentures:a retrospective,preliminary clinical investigation[J]. Int J Prosthodont,2005,18(5):371-376.
[13]
Botelho MG,Leung KC,Ng H,et al. A retrospective clinical evaluation of two-unit cantilevered resin-bonded fixed partial dentures[J]. J Am Dent Assoc,2006,137(6):783-788.
[14]
Chang WJ,Lin CL. Estimation of the retainer height biomechanical contribution in posterior resin-bonded fixedpartial dentures:a structural-thermal coupled finite element analysis[J]. Med Biol Eng Comput,2010,48(11):1115-1122.
[15]
Dejak B,Młotkowski A,Langot C. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials[J]. Dent Mater,2012,28(4):433-441.
[16]
皮昕.口腔解剖生理学[M]. 6版.北京:人民卫生出版社,2007:285-298.
[17]
Lee YK,Lee JC,Ha YC,et al. Effect of neck length on third-generation ceramic head failure;finite element and retrieval analysis[J]. J Orthop Sci,2014,19(4):587-597.
[18]
Dal Piva AMO,Tribst JPM,Souza ROAE,et al. Influence of Alveolar Bone Loss and Cement Layer Thickness on the Biomechanical Behavior of Endodontically Treated Maxillary Incisors:A 3-dimensional Finite Element Analysis[J]. J Endod,2017,43(5):791-795.
[19]
Benzing UR,Gall H,Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae[J]. Int J Oral Maxillofac Implants,1995,10(2):188-198.
[20]
Gale MS,Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations[J]. J Dent,1999,27(2):89-99.
[21]
Yang HS,Lang LA,Guckes AD,et al. The effect of thermal change on various dowel-and-core restorative materials[J]. J Prosthet Dent,2001,86(1):74-80.
[22]
Botelho M. Design principles for cantilevered resin-bonded fixed partial dentures[J]. Quintessence Int,2000,31(9):613-619.
[23]
Botelho M. Resin-bonded prostheses:the current state of development[J]. Quintessence Int,1999,30(8):525-534.
[24]
Eftekhar Ashtiani R,Farzaneh B,Azarsina M,et al. Microleakage of Four Dental Cements in Metal Ceramic Restorations With Open Margins[J]. Iran Red Crescent Med J,2015,17(11):e19611.
[25]
Reilly B,Davis EL,Joynt RB,et al. Shear strength of resin developed by four bonding agents used with cast metal restorations[J]. J Prosthet Dent,1992,68(1):53-55.
[26]
Kern M,Thompson VP. Durability of resin bonds to a cobalt-chromium alloy[J]. J Dent,1995,23(1):47-54.
[27]
Rees JS. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies[J]. J Oral Rehabil,2001,28(5):425-432.
[1] 黄桂武, 李文昌, 邬培慧, 古明晖. 臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(05): 578-583.
[2] 罗林聪, 彭鳒侨. 基于骨肌多体动力学前臂旋前旋后的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(02): 173-178.
[3] 韩亮, 卢向东, 张晋峰. 两种常用内固定治疗股骨转子间骨折的有限元分析[J]. 中华关节外科杂志(电子版), 2019, 13(02): 230-236,260.
[4] 张银婷, 彭鳒侨. 基于MRI图像的计算机膝关节建模新思路[J]. 中华关节外科杂志(电子版), 2018, 12(06): 786-790.
[5] 谢文强, 王洁琪, 郑美华, 李小宇, 张雯, 韦佩伶. 不同构建方向激光选区融化钛合金卡环的疲劳性能研究及有限元应力分析[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 271-277.
[6] 吴晓琳, 张彬, 任力娟, 刘爽, 王东文. 肛提肌损伤的多学科研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(02): 153-157.
[7] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[8] 王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.
[9] 李立, 李世伟, 汪方, 吴晓明, 李林, 李鸣, 吴腾飞, 谢红. 肱骨外展动作中肩袖生物力学的有限元分析[J]. 中华肩肘外科电子杂志, 2019, 07(04): 301-307.
[10] 包呼日查, 齐岩松, 陶立元, 王永祥, 魏宝刚, 李筱贺, 徐永胜. 肩袖损伤修补金属锚钉置入角度——有限元分析[J]. 中华肩肘外科电子杂志, 2019, 07(01): 56-62.
[11] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[12] 朱燕宾, 程晓东, 王宇钏, 王忠正, 李泳龙, 李会杰, 王娟, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 257-259.
[13] 杜兵, 马腾, 路遥, 张聪明, 许毅博, 黄强, 姬帅, 李明, 任程, 王谦, 张堃, 李忠. 新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 333-338.
[14] 王晖, 杨朝旭, 孟凡涛. 胫骨托盘的不同结构设计对胫骨应力分布的影响[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 321-326.
[15] 李颖, 童梁成, 杨智伟, 蒋继亮, 汪剑龄, 杨俊生, 邢建新. 四维有限元骨承载力分析技术在判断长管骨愈合程度中的应用[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 312-320.
阅读次数
全文


摘要