切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 101 -109. doi: 10.3877/cma.j.issn.1674-1366.2018.02.006

所属专题: 文献

基础研究

脂肪间充质干细胞条件培养基及其外泌体促成骨作用的体外研究
黄春煌1, 马媛媛1, 任林1, 蔡庆伟1, 陈瑞欣1, 付强1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-12-19 出版日期:2018-04-01
  • 通信作者: 付强
  • 基金资助:
    国家自然科学基金(81570955); 广东省科技计划(2013B051000032、2014A020212072); 广州市科技计划(201510010222)

Conditioned media and exosomes from rat adipose-derived mesenchymal stem cells enhance bone regeneration: a study in vitro

Chunhuang Huang1, Yuanyuan Ma1, Lin Ren1, Qingwei Cai1, Ruixin Chen1, Qiang Fu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-12-19 Published:2018-04-01
  • Corresponding author: Qiang Fu
  • About author:
    Corresponding author:Fu Qiang,Email:
引用本文:

黄春煌, 马媛媛, 任林, 蔡庆伟, 陈瑞欣, 付强. 脂肪间充质干细胞条件培养基及其外泌体促成骨作用的体外研究[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 101-109.

Chunhuang Huang, Yuanyuan Ma, Lin Ren, Qingwei Cai, Ruixin Chen, Qiang Fu. Conditioned media and exosomes from rat adipose-derived mesenchymal stem cells enhance bone regeneration: a study in vitro[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(02): 101-109.

目的

研究大鼠脂肪间充质干细胞(ASC)条件培养基及其外泌体的体外促成骨作用。

方法

分离培养原代大鼠ASC和骨髓间充质干细胞(BMSC)并进行鉴定;超速离心法收集/去除条件培养基中的外泌体,采用透射电镜法及粒径分析法鉴定所获取的外泌体;细胞计数试剂盒(CCK-8)法检测其对细胞增殖的影响;Transwell检测其对细胞迁移的影响;碱性磷酸酶(ALP)活性实验和实时荧光定量聚合酶链反应(PCR)检测其对成骨的影响。SPSS 20.0软件、Bonferroni检验进行统计学分析。

结果

实验所获取的原代BMSC和ASC符合间充质干细胞鉴定标准。透射电镜及粒径分析结果表明所获取的外泌体具有典型的外泌体形态特征。CCK-8实验表明培养7 d后,各处理组中A450值存在差异(F= 157.74,P= 0.001),BMSC增殖条件培养基组A450值(2.71 ± 0.15)高于对照组(1.95 ± 0.11);去外泌体组的A450值(2.28 ± 0.34)低于条件培养基组。Transwell实验结果表明,培养24 h后各处理组中的迁移细胞数存在差异(F= 46.79,P= 0.001),条件培养基组迁移细胞数(51.6 ± 1.3)高于对照组(28.6 ± 1.4),去外泌体组迁移的细胞数(37.2 ± 2.2)低于条件培养基组。ALP活性实验结果表明,培养7 d后各处理组中的ALP活性存在差异(F= 78.43,P= 0.001),条件培养基组ALP活性为(310 ± 11),高于对照组(200 ± 24),去外泌体组ALP活性为(240 ± 19)低于条件培养基组。实时荧光定量PCR检测成骨相关基因的表达,各处理组中的基因表达存在差异(FALP= 32.30,PALP= 0.001;FRUNX2= 26.78,PRUNX2= 0.001)。

结论

成骨诱导后大鼠ASC条件培养基及其中的外泌体能够有效的促进BMSC增殖、迁移和成骨向分化,具有体外促成骨作用。

Objective

To investigate the effect of conditioned media and exosomes from rat adipose-derived mesenchymal stem cells (ASCs) on bone regeneration in vitro.

Methods

Primary ASCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated, cultured and identified. ASC-derived exosomes were isolated/depleted by ultracentrifugation and identified by transmission electron microscope and particle size analysis. CCK-8 and Transwell assays were used to evaluate cell proliferation and migration, respectively. The osteogenic differentiation in BMSCs were evaluated by qRT-PCR and ALP activity test. The mean values between groups were analyzed by Bonferroni Test in SPSS 20.0.

Results

The ASCs and BMSCs were confirmed. Transmission electron microscope analysis and particle size analysis showed ASC-derived exosomes after osteoinduction with characteristic morphology and size. CCK-8 assay showed significant difference among groups after 7 d culture (F= 157.74, P= 0.001) . Cell proliferation in conditioned media group (A450= 2.71±0.15) was significantly higher than that in control (A450= 1.95 ± 0.11) , and exosome deleted group (A450= 2.28 ± 0.34) . Transwell assay showed significant difference among groups after 24 h culture (F= 46.79, P= 0.001) . Migrating cells in conditioned media group (51.6 ± 1.3) was significantly higher than that in control (28.6±1.4) and exosome deleted group (37.2 ± 2.2) . ALP activity assay showed significant difference among groups after 7 d culture (F= 78.43, P= 0.001) . ALP content in conditioned media group (310 ± 11) was significantly higher than that in control (200 ± 24) and exosome deleted group (125 ± 15) . QPCR showed significant difference among groups (FALP= 32.30, PALP= 0.001; FRUNX2= 26.78, PRUNX2= 0.001) .

Conclusion

ASC-CM and exosomes can enhance the proliferation, migration, and osteogenic differentiation of BMSCs and promote bone regeneration in vitro.

表1 实时荧光定量PCR引物序列
图1 大鼠骨髓间充质干细胞(BMSC)和脂肪间充质干细胞(ASC)形态及克隆形成鉴定(低倍放大)
图2 大鼠骨髓间充质干细胞(BMSC)和脂肪间充质干细胞(ASC)多向分化能力鉴定
图3 大鼠骨髓间充质干细胞(BMSC)和脂肪间充质干细胞(ASC)表面标志物流式鉴定
图4 大鼠脂肪间充质干细胞(ASC)外泌体透射电镜下形态
图5 大鼠脂肪间充质干细胞(ASC)外泌体粒径分析
表2 不同处理组作用对BMSC增殖活性检测结果(A450 ± s
图6 不同处理组对骨髓间充质干细胞(BMSC)增殖的影响
图7 不同处理组对骨髓间充质干细胞(BMSC)迁移的影响
图8 不同处理组对骨髓间充质干细胞(BMSC)碱性磷酸酶(ALP)活性的影响
图9 不同处理组对骨髓间充质干细胞(BMSC)成骨相关mRNA表达的影响
[1]
Grayson WL,Bunnell BA,Martin E,et al. Stromal cells and stem cells in clinical bone regeneration[J]. Nat Rev Endocrinol,2015,11(3):140-150.
[2]
Amini AR,Laurencin CT,Nukavarapu SP. Bone tissue engineering:recent advances and challenges[J]. Crit Rev Biomed Eng,2012,40(5):363-408.
[3]
Murray IR,Corselli M,Petrigliano FA,et al. Recent insights into the identity of mesenchymal stem cells:Implications for orthopaedic applications[J]. Bone Joint J,2014,96-B(3):291-298.
[4]
Spaeth EL,Dembinski JL,Sasser AK,et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression[J]. PLoS One,2009,4(4):e4992.
[5]
Rosland GV,Svendsen A,Torsvik A,et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation[J]. Cancer Res,2009,69(13):5331-5339.
[6]
Rani S,Ryan AE,Griffin MD,et al. Mesenchymal Stem Cell-derived Extracellular Vesicles:Toward Cell-free Therapeutic Applications[J]. Mol Ther,2015,23(5):812-823.
[7]
Zhang S,Chu WC,Lai RC,et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regen-eration[J]. Osteoarthritis Cartilage,2016,24(12):2135-2140.
[8]
Marote A,Teixeira FG,Mendes-Pinheiro B,et al. MSCs-Derived Exosomes:Cell-Secreted Nanovesicles with Regenerative Potential[J]. Front Pharmacol,2016(7):231.
[9]
Marquez-Curtis LA,Janowska-Wieczorek A,McGann LE,et al. Mesenchymal stromal cells derived from various tissues:Biologi-cal,clinical and cryopreservation aspects[J]. Cryobiology,2015,71(2):181-197.
[10]
Hass R,Kasper C,Bohm S,et al. Different populations and sources of human mesenchymal stem cells(MSC):A comparison of adult and neonatal tissue-derived MSC[J]. Cell Commun Signal,2011(9):12.
[11]
Choi JR,Yong KW,Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications[J]. Cell Mol Life Sci,2017,74(14):2587-2600.
[12]
Dorronsoro A,Fernández-Rueda J,Fechter K,et al. Human mesenchymal stromal cell-mediated immunoregulation:mecha-nisms of action and clinical applications[J]. Bone Marrow Res,2013(2013):203643.
[13]
Strioga M,Viswanathan S,Darinskas A,et al. Same or not the same?Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells[J]. Stem Cells Dev,2012,21(14):2724-2752.
[14]
Vilalta M,Dégano IR,Bagó J,et al. Biodistribution,long-term survival,and safety of human adipose tissue-derived mesenchy-mal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging[J]. Stem Cells Dev,2008,17(5):993-1003.
[15]
Chen L,Tredget EE,Wu PY,et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing[J]. PLoS One,2008,3(4):e1886.
[16]
Ponte AL,Marais E,Gallay N,et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells:comparison of chemokine and growth factor chemotactic activities[J]. Stem Cells,2007,25(7):1737-1745.
[17]
Inukai T,Katagiri W,Yoshimi R,et al. Novel application of stem cell-derived factors for periodontal regeneration[J]. Biochem Biophys Res Commun,2013,430(2):763-768.
[18]
Kawai T,Katagiri W,Osugi M,et al. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration[J]. Cytotherapy,2015,17(4):369-381.
[19]
Ando Y,Matsubara K,Ishikawa J,et al. Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms[J]. Bone,2014(61):82-90.
[20]
Ogata K,Katagiri W,Osugi M,et al. Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate-related osteonecrosis of the jaw-like model[J]. Bone,2015(74):95-105.
[21]
Katagiri W,Osugi M,Kawai T,et al. Novel cell-free regeneration of bone using stem cell-derived growth factors[J]. Int J Oral Maxillofac Implants,2013,28(4):1009-1016.
[22]
Tsuchiya S,Ohmori M,Hara K,et al. An Experimental Study on Guided Bone Regeneration Using a Polylactide-co-glycolide Membrane-Immobilized Conditioned Medium[J]. Int J Oral Maxillofac Implants,2015,30(5):1175-1186.
[23]
Osugi M,Katagiri W,Yoshimi R,et al. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects[J]. Tissue Eng Part A,2012,18(13-14):1479-1489.
[24]
Platas J,Guillén MI,del Caz MD,et al. Conditioned media from adipose-tissue-derived mesenchymal stem cells downregulate degradative mediators induced by interleukin-1beta in osteoarthritic chondrocytes[J]. Mediators Inflamm,2013(2013):357014.
[25]
Lu Z,Chen Y,Dunstan C,et al. Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration[J]. Tissue Eng Part A,2017,23(21-22):1212-1220.
[26]
Xu JF,Yang GH,Pan XH,et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. PLoS One,2014,9(12):e114627.
[27]
Ravindran S,Huang CC,Gajendrareddy P,et al. Biomimetically enhanced demineralized bone matrix for bone regenerative applications[J]. Front Physiol,2015(6):292.
[28]
Furuta T,Miyaki S,Ishitobi H,et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model[J]. Stem Cells Transl Med,2016,5(12):1620-1630.
[29]
Zhang J,Liu X,Li H,et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Res Ther,2016,7(1):136.
[30]
Qi X,Zhang J,Yuan H,et al. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogene-sis and Osteogenesis in Osteoporotic Rats[J]. Int J Biol Sci,2016,12(7):836-849.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[8] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[9] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 郑晴晴, 王剑, 阳韬. 外泌体miRNA对肺结节的诊断进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 293-295.
[12] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要