切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (05) : 357 -363. doi: 10.3877/cma.j.issn.1674-1366.2015.05.002

所属专题: 文献

基础研究

转录因子Nanog过表达对人牙髓细胞增殖及多向分化能力的影响
宁艳洋1, 李金铃1, 徐琼1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-04-19 出版日期:2015-10-01
  • 通信作者: 徐琼
  • 基金资助:
    国家自然科学基金(81170953); 广东省自然科学基金(S2011010004931)

Effects of Nanog overexpression on the proliferation and multipotent differentiation potentiality of human dental pulp cells

Yanyang Ning1, Jinling Li1, Qiong Xu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-04-19 Published:2015-10-01
  • Corresponding author: Qiong Xu
  • About author:
    Corresponding author: Xu Qiong, Email: , Tel: 020-83870507
引用本文:

宁艳洋, 李金铃, 徐琼. 转录因子Nanog过表达对人牙髓细胞增殖及多向分化能力的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(05): 357-363.

Yanyang Ning, Jinling Li, Qiong Xu. Effects of Nanog overexpression on the proliferation and multipotent differentiation potentiality of human dental pulp cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(05): 357-363.

目的

探讨过表达多能相关转录因子Nanog对人牙髓细胞增殖及多向分化能力的影响。

方法

构建过表达Nanog的慢病毒载体质粒pSIN-EF2-Nanog-IRES-GFP-puro,采用psPAX和pMD2.G慢病毒包装系统转入293T细胞进行病毒液的生产和收取,转染生长良好的第3代人牙髓细胞,构建稳定过表达Nanog的人牙髓细胞株,以空载体转染的细胞为对照组,对细胞进行成脂及成牙本质诱导。采用BrdU法检测细胞的增殖情况,检测多能性转录因子Oct4和Sox2的表达,以及细胞成脂、成牙本质分化能力。采用单因素方差分析数据。

结果

成功构建Nanog过表达的人牙髓细胞株;BrdU法检测结果显示,Nanog过表达组比对照组细胞增殖能力强(F = 90.421,P = 0.000)。过表达组Oct4、Sox2 mRNA和蛋白表达水平明显高于对照组(FOct4 mRNA = 71.649,POct4 mRNA=0.000;FSox2 mRNA = 106.278,PSox2 mRNA = 0.000;FOct4蛋白 = 41.632,POct4蛋白 = 0.002;FSox2蛋白 = 38.962,PSox2蛋白 = 0.002)。在矿化诱导条件下,Nanog过表达组DSPP、DMP1和OCN表达量、矿化结节产生量高于对照组(FDSPP = 15.261,PDSPP<0.05;FDMP1 = 16.235,PDMP1<0.05;FOCN = 17.019,POCN<0.05);成脂诱导21 d后,Nanog过表达组LPL和PPARγ2表达量及脂质产生高于对照组(FLPL = 15.542,PLPL<0.05;FPPARγ2 = 10.437,PPPARγ2<0.05)。

结论

过表达Nanog能提高人牙髓细胞增殖能力,促进多能性转录因子Oct4、Sox2的表达,增强细胞多向分化能力。

Objective

To investigate the effect of overexpression Nanog on the cell proliferationand multipotent differentiation potentiality of human dental pulp cells (hDPCs) .

Methods

Primary human pulp cells were transfected with plasmid pSIN-EF2-Nanog-IRES-GFP-puro by lentiviral transfection and stable nanog-expressing cell line was screened under fluorescence microscope. The effect of Nanog on the proliferation of hDPCs was examined with BrdU assay. The expressions levels of pluripotency factor Oct4 and Sox2 were detected using real-time PCR and western blotting. Nanog-hDPCs were cultured in odontogenic and adipogenic induction media respectively. The odontogenic and adipogenic differentiation potentiality were evaluated by Alizarin red S staining and Oil red O staining, and the odontogenic and adipogenic markers were detected using real-time PCR.

Results

The recombinant lentiviral vector containing Nanog was successfully constructed and showed high efficiency during infection in hDPCs. The BrdU assay showed that the growth rate of Nanog-hDPCs was higher compared with the controls (F = 90.421, P = 0.000) . The expressions of Oct4 and Sox2 were increased in Nanog-hDPCs in comparison with the controls (FOct4 mRNA= 71.649, POct4 mRNA = 0.000; FSox2 mRNA= 106.278, PSox2 mRNA = 0.000; FOct4 = 41.632, POct4 = 0.002; FSox2 = 38.962, PSox2 = 0.002) . Furthermore, the mRNA levels of DSPP, DMP1, and OCN were increased, and the number of mineralized nodules was significantly higher in Nanog-hDPCs (FDSPP = 15.261, PDSPP < 0.05; FDMP1 = 16.235, PDMP1 < 0.05; FOCN = 17.019, POCN < 0.05) . Meanwhile, significantly higher mRNA expression levels of LPL and PPARγ2 and more lipid droplets were observed in Nanog-hDPCs compared to the controls (FLPL = 15.542, PLPL < 0.05; FPPARγ2 = 10.437, PPPARγ2 < 0.05) .

Conclusion

Nanog overexpression enhanced cell proliferation, upregulated the expression of pluripotent markers, and promoted the multipotent differentiation potential (odontogenic and adipogenic differentiation) of hDPCs.

表1 实时荧光定量PCR引物序列
图1 Nanog过表达人牙髓细胞株的构建
图2 过表达Nanog人牙髓细胞的增殖能力
图3 过表达Nanog对人牙髓细胞表达Oct4、Sox2的影响
图4 过表达Nanog对人牙髓细胞成脂及成牙本质能力的影响
[1]
Gronthos S,Brahim J,Li W,et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res,2002,81(8):531-535.
[2]
Papaccio G,Graziano A,d′Aquino R,et al. Long-term cryopreservation of dental pulp stem cells(SBP-DPSCs)and their differentiated osteoblasts:a cell source for tissue repair[J]. J Cell Physiol,2006,208(2):319-325.
[3]
Ballini A,De Frenza G,Cantore S,et al. In vitro stem cell cultures from human dental pulp and periodontal ligament:new prospects in dentistry[J]. Int J Immunopathol Pharmacol,2007,20(1):9-16.
[4]
Toriumi T,Takayama N,Murakami M,et al. Characterization of mesenchymal progenitor cells in the crown and root pulp of primary teeth[J]. Biomed Res,2015,36(1):31-45.
[5]
Mitsui K,Tokuzawa Y,Itoh H,et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell,2003,113(5):631-642.
[6]
Chambers I,Colby D,Robertson M,et al. Functional expression cloning of Nanog,a pluripotency sustaining factor in embryonic stem cells[J]. Cell,2003,113(5):643-655.
[7]
Kerkis I,Kerkis A,Dozortsev D,et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers[J]. Cells Tissues Organs,2006,184(3-4):105-116.
[8]
Ponnaiyan D,Bhat KM,Bhat GS. Comparison of immuno-phenotypes of stem cells from human dental pulp and periodontal ligament[J]. Int J Immunopathol Pharmacol,2012,25(1):127-134.
[9]
宁艳洋,徐琼,王彤,等. 多能性转录因子Nanog在体外培养牙髓细胞中的表达[J]. 牙体牙髓牙周病学杂志,2013,23(6):362-365.
[10]
Yu J,Vodyanik MA,Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science,2007,318(5858):1917-1920.
[11]
Yan X,Qin H,Qu C,et al. iPS cells reprogrammed from human mesenchymal- like stem/progenitor cells of dental tissue origin[J]. Stem Cells Dev,2010,19(4):469-480.
[12]
Theunissen TW,van Oosten AL,Castelo-Branco G,et al. Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions[J]. Curr Biol,2011,21(1):65-71.
[13]
Wu J,Tzanakakis ES. Contribution of stochastic partitioning at human embryonic stem cell division to NANOG heterogeneity[J]. PLoS One,2012,7(11):e50715.
[14]
Huang CE,Hu FW,Yu CH,et al. Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells[J]. Int J Mol Sci,2014,15(10):18623-18639.
[15]
Boyer LA,Lee TI,Cole MF,et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell,2005,122(6):947-956.
[16]
Pan G,Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency[J]. Cell Res,2007,17(1):42-49.
[17]
Liu L,Wei X,Ling J,et al. Expression pattern of Oct-4,Sox2,and c-Myc in the primary culture of human dental pulp derived cells[J]. J Endod,2011,37(4):466-472.
[18]
韦曦,张芳,刘路,等. Oct4基因转染对人牙髓细胞多能相关转录因子表达的影响[J/CD]. 中华口腔医学研究杂志:电子版,2011,5(4):347-355.
[19]
Liu L,Wu L,Wei X,et al. Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability[J]. Stem Cells Dev,2015,24(8):962-972.
[20]
Wang Z,Oron E,Nelson B,et al. Distinct lineage specification roles for NANOG,OCT4,and SOX2 in human embryonic stem cells[J]. Cell Stem Cell,2012,10(4):440-454.
[21]
Bertero A,Madrigal P,Galli A,et al. Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark[J]. Genes Dev,2015,29(7):702-717.
[22]
Katano M,Ema M,Nakachi Y,et al. Forced expression of Nanog or Esrrb preserves the ESC status in the absence of nucleostemin expression[J]. Stem Cells,2015,33(4):1089-1101.
[1] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[2] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 石浩伟, 郝少龙, 纪宇, 孙浩, 聂芳, 胡阳, 李泽乾, 韩威. 长链非编码RNA-BANCR在胰腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2022, 16(05): 554-559.
[5] 雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.
[6] 李芬, 黄文娟, 朱乐攀. 色素上皮因子表达对肺癌细胞增殖及迁移能力的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 246-248.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[9] 董会月, 张晓, 祝玲, 张怡, 孙晶晶, 路君. TET3促进肾透明细胞癌细胞增殖[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 337-342.
[10] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[11] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[12] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[13] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.
阅读次数
全文


摘要