切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (02) : 118 -122. doi: 10.3877/cma.j.issn.1674-1366.2015.02.006

所属专题: 文献

基础研究

血小板源性生长因子与流体剪切力对成骨细胞增殖及c-fos表达的影响
陈晓丹1, 向映辉2, 覃峰3, 杨志3, 谭淑仪3, 宋子珺3, 付强3,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室;213000 常州市口腔医院牙体牙髓科
  • 收稿日期:2015-02-13 出版日期:2015-04-01
  • 通信作者: 付强
  • 基金资助:
    广东省科技计划(2013B051000032)

Effect of platelet-derived growth factors and fluid shear stress on cell proliferation and c-fos expression in osteoblasts

Xiaodan Chen1, Yinghui Xiang2, Feng Qin3, Zhi Yang3, Shuyi Tan3, Zijun Song3, Qiang Fu3,()   

  1. 1. Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Operative Dentistry and Endodontics, Changzhou Hospital of Stomatology, Changzhou 213000, China
    3. Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-02-13 Published:2015-04-01
  • Corresponding author: Qiang Fu
  • About author:
    Corresponding author: Fu Qiang, Email: , Tel: 020-83802805
引用本文:

陈晓丹, 向映辉, 覃峰, 杨志, 谭淑仪, 宋子珺, 付强. 血小板源性生长因子与流体剪切力对成骨细胞增殖及c-fos表达的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2015, 09(02): 118-122.

Xiaodan Chen, Yinghui Xiang, Feng Qin, Zhi Yang, Shuyi Tan, Zijun Song, Qiang Fu. Effect of platelet-derived growth factors and fluid shear stress on cell proliferation and c-fos expression in osteoblasts[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(02): 118-122.

目的

研究血小板源性生长因子(PDGF)与流体剪切力(FSS)对成骨细胞增殖及c-fos表达的影响。

方法

将0、10、30和50 ng/ml的PDGF作用于成骨细胞,CCK-8、实时荧光定量聚合酶链反应(PCR)分别检测细胞增殖和c-fos mRNA表达;将PDGF作用于成骨细胞,同时以12 dyne/cm2的FSS加载1 h,分别采用CCK-8、实时荧光定量PCR和Western blot检测成骨细胞增殖、c-fos mRNA和蛋白的表达。

结果

PDGF或FSS单独作用均能促进成骨细胞增殖(FFSS = 6.500,PFSS< 0.05;FPDGF = 6.077,PPDGF< 0.05),并使c-fos mRNA表达水平显著升高(FFSS = 6.425,PFSS< 0.05;FPDGF = 7.549,PPDGF< 0.05);但PDGF与FSS间不存在协同作用(F增殖 = 1.826,P增殖> 0.05;Fc-fos mRNA = 2.101,Pc-fos mRNA> 0.05;Fc-fos蛋白 = 1.561,Pc-fos蛋白> 0.05)。

结论

PDGF单独作用或与FSS联合应用均可促进成骨细胞增殖和c-fos基因的表达,但PDGF与FSS间不存在协同作用。

Objectives

To study the effect of platelet-derived growth factor (PDGF) and fluid shear stress (FSS) on cell proliferation and c-fos expression in osteoblasts.

Methods

Different concerntrations of PDGF (0, 10, 30, 50 ng/ml) were used to stimulate primary cultured osteoblasts, respectively. CCK-8 and real-time quantitative PCR were performed to detect cell proliferation and c-fos mRNA expression. Furthermore, osteoblasts were stimulated by PDGF and loaded by FSS of 12 dyne/cm2 for 1 h, together. CCK-8, real-time quantitative PCR and western blot were performed to detect cell proliferation, c-fos mRNA and protein expression, respectively.

Results

PDGF or FSS can respectively increase cell proliferation (FFSS = 6.500, PFSS< 0.05; FPDGF = 6.077, PPDGF< 0.05) and the expression levels of c-fos mRNA in osteoblasts (FFSS = 6.425, PFSS< 0.05; FPDGF = 7.549, PPDGF< 0.05) . There was no synergistic effect between PDGF and FSS (Fproliferation = 1.826, Pproliferation> 0.05; Fc-fos mRNA = 2.101, Pc-fos mRNA> 0.05; Fc-fos protein = 1.561, Pc-fos protein> 0.05) .

Conclusion

PDGF itself or combined with FSS can increase cell proliferation and c-fos expression levels in osteoblasts, but there is no synergistic effect between PDGF and FSS on cell proliferation and c-fos expression in osteoblasts.

表1 实时荧光定量PCR引物序列
图1 不同浓度PDGF对成骨细胞增殖的影响
图2 不同浓度PDGF对成骨细胞c-fos mRNA相对表达水平的影响
图3 PDGF与FSS作用对成骨细胞增殖的影响
图4 PDGF与FSS作用对成骨细胞c-fos mRNA表达的影响
图5 PDGF与FSS对成骨细胞c-fos蛋白表达的影响
表2 PDGF与FSS作用对成骨细胞增殖影响的双因素方差分析
表3 PDGF与FSS对成骨细胞c-fos mRNA相对表达水平的双因素方差分析
表4 PDGF与FSS作用下成骨细胞c-fos蛋白相对表达水平的双因素方差分析
[1]
Schulte FA,Ruffoni D,Lambers FM, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level[J]. PLoS One, 2013, 8(4): e62172.
[2]
Rangaswami H,Marathe N,Zhuang S, et al. TypeⅡ cGMP-dependent protein kinase mediates osteoblast mechanotransduction[J]. J Biol Chem, 2009, 284(22): 14796-14808.
[3]
Niemann I,Hannemann A,Nauck M, et al. The association between insulin-like growth factor I and bone turnover markers in the general adult population[J]. Bone, 2013, 56(1): 184-190.
[4]
Kempen DH,Creemers LB,Dhert WJ, et al. Growth factor interactions in bone regeneration[J]. Tissue Eng Part B Rev, 2010, 16(6): 551-566.
[5]
Kapur S,Mohan S,Baylink DJ, et al. Fluid shear stress synergizes with insulin-like growth factor-I(IGF-I)on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway[J]. J Biol Chem, 2005, 280(20): 20163-20170.
[6]
Yeh CR,Chiu JJ,Lee CI, et al. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-Integrin[J]. J Bone Miner Res, 2010, 25(3): 627-639.
[7]
Detry C,Lamour V,Castronovo V, et al. CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells[J]. Bone, 2008, 42(2): 422-431.
[8]
Sunters A,Thomas DP,Grigoriadis AE, et al. Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: induction of cyclin A and enhanced CDK2 activity[J]. J Biol Chem, 2004, 279(11): 9882-9891.
[9]
Pedersen ME,Fortunati D,Nielsen M, et al. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro[J]. Bone, 2008, 43(4): 700-707.
[10]
Guo D,Chien S,Shyy JY. Regulation of endothelia cell cycle by laminar versus oscillatory flow: distinctmodel of interactions of AMP-activated protein kinase and Akt pathway[J]. Circ Res, 2007, 100(4): 564-571.
[11]
Ponik SM,Triplett JW,Pavalko FM. Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles[J]. J Cell Biochem, 2007, 100(3): 794-807.
[12]
San Martín A,Lee MY,Williams HC, et al. Dual regulation of cofilin activity by LIM kinase and Slingshot-1L phosphatase controls platelet-derived growth factor-induced migration of human aortic smooth muscle cells[J]. Circ Res, 2008, 102(4): 432-438.
[13]
Pavalko FM,Chen NX,Turner CH, et al. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions[J]. Am J Physiol, 1998, 275(6 Pt 1): C1591-C1601.
[14]
Jaasma MJ,Jackson WM,Tang RY, et al. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells[J]. J Biomech, 2007, 40(9): 1938-1945.
[15]
McGarry JG,Klein-Nulend J,Mullender MG, et al. A comparison of strain and fluid shear stress in stimulating bone cell responses - a computational and experimental study[J]. FASEB J, 2005, 19(3): 482-484.
[16]
Poole AW,Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail[J]. Cell Signal, 2005, 17(11): 1323-1332.
[17]
Tibaldi E,Zonta F,Bordin L, et al. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling[J]. Biochim Biophys Acta, 2014, 1843(2): 288-298.
[18]
Geraldes P,Hiraoka-Yamamoto J,Matsumoto M, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy[J]. Nat Med, 2009, 15(11): 1298-1306.
[19]
Katz S,Boland R,Santillán G, et al. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation[J]. Int J Biochem Cell Biol, 2006, 38(12): 2082-2091.
[20]
Wang W,Zhuang H,Levitz CL, et al. The increased level of PDGF-A contributes to the increased proliferation induced by mechanical stimulation in osteoblastic cells[J]. Biochem Mol Biol Int, 1997, 43(2): 339-346.
[1] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[2] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[3] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[4] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[5] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[6] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[7] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[8] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[9] 刘杜先, 张杰东, 付鲁渝, 熊志强, 龚程, 张小雅, 高明悦, 孟俊宏, 刘兰侠. 沉默circXPO1抑制肝癌细胞恶性生物学行为[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 159-166.
[10] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[11] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[12] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[13] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 娄彦文, 李涵, 李运鸿, 徐萌冉, 魏洋行, 随蓓蓓. 人参皂苷Rg3对人乳腺癌细胞的代谢活性及caspase 3、CDK2表达的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 90-94.
阅读次数
全文


摘要