切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (02) : 118 -122. doi: 10.3877/cma.j.issn.1674-1366.2015.02.006

所属专题: 文献

基础研究

血小板源性生长因子与流体剪切力对成骨细胞增殖及c-fos表达的影响
陈晓丹1, 向映辉2, 覃峰3, 杨志3, 谭淑仪3, 宋子珺3, 付强3,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室;213000 常州市口腔医院牙体牙髓科
  • 收稿日期:2015-02-13 出版日期:2015-04-01
  • 通信作者: 付强
  • 基金资助:
    广东省科技计划(2013B051000032)

Effect of platelet-derived growth factors and fluid shear stress on cell proliferation and c-fos expression in osteoblasts

Xiaodan Chen1, Yinghui Xiang2, Feng Qin3, Zhi Yang3, Shuyi Tan3, Zijun Song3, Qiang Fu3,()   

  1. 1. Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Operative Dentistry and Endodontics, Changzhou Hospital of Stomatology, Changzhou 213000, China
    3. Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-02-13 Published:2015-04-01
  • Corresponding author: Qiang Fu
  • About author:
    Corresponding author: Fu Qiang, Email: , Tel: 020-83802805
引用本文:

陈晓丹, 向映辉, 覃峰, 杨志, 谭淑仪, 宋子珺, 付强. 血小板源性生长因子与流体剪切力对成骨细胞增殖及c-fos表达的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(02): 118-122.

Xiaodan Chen, Yinghui Xiang, Feng Qin, Zhi Yang, Shuyi Tan, Zijun Song, Qiang Fu. Effect of platelet-derived growth factors and fluid shear stress on cell proliferation and c-fos expression in osteoblasts[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(02): 118-122.

目的

研究血小板源性生长因子(PDGF)与流体剪切力(FSS)对成骨细胞增殖及c-fos表达的影响。

方法

将0、10、30和50 ng/ml的PDGF作用于成骨细胞,CCK-8、实时荧光定量聚合酶链反应(PCR)分别检测细胞增殖和c-fos mRNA表达;将PDGF作用于成骨细胞,同时以12 dyne/cm2的FSS加载1 h,分别采用CCK-8、实时荧光定量PCR和Western blot检测成骨细胞增殖、c-fos mRNA和蛋白的表达。

结果

PDGF或FSS单独作用均能促进成骨细胞增殖(FFSS = 6.500,PFSS< 0.05;FPDGF = 6.077,PPDGF< 0.05),并使c-fos mRNA表达水平显著升高(FFSS = 6.425,PFSS< 0.05;FPDGF = 7.549,PPDGF< 0.05);但PDGF与FSS间不存在协同作用(F增殖 = 1.826,P增殖> 0.05;Fc-fos mRNA = 2.101,Pc-fos mRNA> 0.05;Fc-fos蛋白 = 1.561,Pc-fos蛋白> 0.05)。

结论

PDGF单独作用或与FSS联合应用均可促进成骨细胞增殖和c-fos基因的表达,但PDGF与FSS间不存在协同作用。

Objectives

To study the effect of platelet-derived growth factor (PDGF) and fluid shear stress (FSS) on cell proliferation and c-fos expression in osteoblasts.

Methods

Different concerntrations of PDGF (0, 10, 30, 50 ng/ml) were used to stimulate primary cultured osteoblasts, respectively. CCK-8 and real-time quantitative PCR were performed to detect cell proliferation and c-fos mRNA expression. Furthermore, osteoblasts were stimulated by PDGF and loaded by FSS of 12 dyne/cm2 for 1 h, together. CCK-8, real-time quantitative PCR and western blot were performed to detect cell proliferation, c-fos mRNA and protein expression, respectively.

Results

PDGF or FSS can respectively increase cell proliferation (FFSS = 6.500, PFSS< 0.05; FPDGF = 6.077, PPDGF< 0.05) and the expression levels of c-fos mRNA in osteoblasts (FFSS = 6.425, PFSS< 0.05; FPDGF = 7.549, PPDGF< 0.05) . There was no synergistic effect between PDGF and FSS (Fproliferation = 1.826, Pproliferation> 0.05; Fc-fos mRNA = 2.101, Pc-fos mRNA> 0.05; Fc-fos protein = 1.561, Pc-fos protein> 0.05) .

Conclusion

PDGF itself or combined with FSS can increase cell proliferation and c-fos expression levels in osteoblasts, but there is no synergistic effect between PDGF and FSS on cell proliferation and c-fos expression in osteoblasts.

表1 实时荧光定量PCR引物序列
图1 不同浓度PDGF对成骨细胞增殖的影响
图2 不同浓度PDGF对成骨细胞c-fos mRNA相对表达水平的影响
图3 PDGF与FSS作用对成骨细胞增殖的影响
图4 PDGF与FSS作用对成骨细胞c-fos mRNA表达的影响
图5 PDGF与FSS对成骨细胞c-fos蛋白表达的影响
表2 PDGF与FSS作用对成骨细胞增殖影响的双因素方差分析
表3 PDGF与FSS对成骨细胞c-fos mRNA相对表达水平的双因素方差分析
表4 PDGF与FSS作用下成骨细胞c-fos蛋白相对表达水平的双因素方差分析
[1]
Schulte FA,Ruffoni D,Lambers FM, et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level[J]. PLoS One, 2013, 8(4): e62172.
[2]
Rangaswami H,Marathe N,Zhuang S, et al. TypeⅡ cGMP-dependent protein kinase mediates osteoblast mechanotransduction[J]. J Biol Chem, 2009, 284(22): 14796-14808.
[3]
Niemann I,Hannemann A,Nauck M, et al. The association between insulin-like growth factor I and bone turnover markers in the general adult population[J]. Bone, 2013, 56(1): 184-190.
[4]
Kempen DH,Creemers LB,Dhert WJ, et al. Growth factor interactions in bone regeneration[J]. Tissue Eng Part B Rev, 2010, 16(6): 551-566.
[5]
Kapur S,Mohan S,Baylink DJ, et al. Fluid shear stress synergizes with insulin-like growth factor-I(IGF-I)on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway[J]. J Biol Chem, 2005, 280(20): 20163-20170.
[6]
Yeh CR,Chiu JJ,Lee CI, et al. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-Integrin[J]. J Bone Miner Res, 2010, 25(3): 627-639.
[7]
Detry C,Lamour V,Castronovo V, et al. CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells[J]. Bone, 2008, 42(2): 422-431.
[8]
Sunters A,Thomas DP,Grigoriadis AE, et al. Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: induction of cyclin A and enhanced CDK2 activity[J]. J Biol Chem, 2004, 279(11): 9882-9891.
[9]
Pedersen ME,Fortunati D,Nielsen M, et al. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro[J]. Bone, 2008, 43(4): 700-707.
[10]
Guo D,Chien S,Shyy JY. Regulation of endothelia cell cycle by laminar versus oscillatory flow: distinctmodel of interactions of AMP-activated protein kinase and Akt pathway[J]. Circ Res, 2007, 100(4): 564-571.
[11]
Ponik SM,Triplett JW,Pavalko FM. Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles[J]. J Cell Biochem, 2007, 100(3): 794-807.
[12]
San Martín A,Lee MY,Williams HC, et al. Dual regulation of cofilin activity by LIM kinase and Slingshot-1L phosphatase controls platelet-derived growth factor-induced migration of human aortic smooth muscle cells[J]. Circ Res, 2008, 102(4): 432-438.
[13]
Pavalko FM,Chen NX,Turner CH, et al. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions[J]. Am J Physiol, 1998, 275(6 Pt 1): C1591-C1601.
[14]
Jaasma MJ,Jackson WM,Tang RY, et al. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells[J]. J Biomech, 2007, 40(9): 1938-1945.
[15]
McGarry JG,Klein-Nulend J,Mullender MG, et al. A comparison of strain and fluid shear stress in stimulating bone cell responses - a computational and experimental study[J]. FASEB J, 2005, 19(3): 482-484.
[16]
Poole AW,Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail[J]. Cell Signal, 2005, 17(11): 1323-1332.
[17]
Tibaldi E,Zonta F,Bordin L, et al. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling[J]. Biochim Biophys Acta, 2014, 1843(2): 288-298.
[18]
Geraldes P,Hiraoka-Yamamoto J,Matsumoto M, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy[J]. Nat Med, 2009, 15(11): 1298-1306.
[19]
Katz S,Boland R,Santillán G, et al. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation[J]. Int J Biochem Cell Biol, 2006, 38(12): 2082-2091.
[20]
Wang W,Zhuang H,Levitz CL, et al. The increased level of PDGF-A contributes to the increased proliferation induced by mechanical stimulation in osteoblastic cells[J]. Biochem Mol Biol Int, 1997, 43(2): 339-346.
[1] 傅子财, 戴冠东, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 过氧化物酶体增殖物激活受体在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 363-367.
[2] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[5] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[6] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[7] 施我大, 张亚军, 施展, 吴纪祥, 常绘文, 易忠权, 梁晓东, 周晶晶, 宋建祥. Treg细胞通过上调TGF-β1和B7-H3表达促进食管癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 65-75.
[8] 武川军, 彭丽娜, 韩海平, 冯志星. 芒柄花黄素通过调控miR-140-5p/TIGIT轴影响喉鳞状细胞癌细胞增殖和凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 1-9.
[9] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[10] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[11] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要