切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2009, Vol. 3 ›› Issue (06) : 667 -674. doi: 10.3877/cma.j.issn.1674-1366.2009-06-018

综述

侧腭突生长发育和腭裂的分子调节机制
汪淼1, 黄洪章1,()   
  1. 1.510055 广州,中山大学光华口腔医学院·附属口腔医院·口腔医学研究所
  • 收稿日期:2009-04-24 出版日期:2009-12-01
  • 通信作者: 黄洪章

Miao Wang, Hongzhang Huang()   

  • Received:2009-04-24 Published:2009-12-01
  • Corresponding author: Hongzhang Huang
引用本文:

汪淼, 黄洪章. 侧腭突生长发育和腭裂的分子调节机制[J/OL]. 中华口腔医学研究杂志(电子版), 2009, 3(06): 667-674.

Miao Wang, Hongzhang Huang. [J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2009, 3(06): 667-674.

1
Spritz RA. The genetics and epigenetics of orofacial clefts. Curr Opin Pediatr, 2001,13(6):556-560.
2
Murray JC, Schutte BC. Cleft palate:players, pathways, and pursuits. J Clin Invest, 2004,113(12):1676-1678.
3
Cooper ME,Ratay JS,Marazita ML. Asian oral-facial cleft birth prevalence. Cleft Palate Craniofac J, 2006,43(5):580-589.
4
Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet, 1994,6(4):348-356
5
Gritli-Linde A, Bei M, Maas R, et al. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 2002,29(23):5323-5337.
6
Ramos C,Robert B. msh/Msx gene family in neural development. Trends Genet, 2005,21(11):624-632.
7
Bei M, Kratochwil K, Maas RL. BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development, 2000,127(21):4711-4718.
8
Ingham PW, McMahon AP. Hedgehog signaling in animal development:paradigms and principles. Genes Dev, 2001,15(23):3059-3087.
9
Rice R, Spencer-Dene B, Connor EC, et al. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate.J Clin Invest, 2004,113(12):1692-1700.
10
Mansilla MA, Cooper ME, Goldstein T, et al. Contributions of PTCH gene variants to isolated cleft lip and palate. Cleft Palate Craniofac J,2006,43(1):21-29.
11
Yu Z, Lin J, Xiao Y, et al. Induction of cell-cycle arrest by all-trans retinoic acid in mouse embryonic palatal mesenchymal (MEPM)cells. Toxicol Sci, 2005,83(2):349-354.
12
Lan Y, Ovitt CE, Cho ES, et al. Odd-skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development, 2004,131(13):3207-3216.
13
Parrish M, Ott T, Lance-Jones C, et al. Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Mol Cell Biol, 2004,24(16):7102-7112.
14
Leoyklang P, Siriwan P, Shotelersuk V. A mutation of the p63 gene in non-syndromic cleft lip. J Med Genet, 2006,43(6):e28.
15
Liu W, Sun X, Braut A, et al. Distinct functions for Bmp signaling in lip and palate fusion in mice. Development, 2005,132(6):1453-1461.
16
Bakkers J, Hild M, Kramer C, et al. Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell, 2002,2(5):617-627.
17
Dudas M, Kim J, Li WY, et al. Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol, 2006,296(2):298-314.
18
Ito Y, Yeo J Y, Chytil A, et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.Development, 2003,130(21):5269-5280
19
Varju P, Katarova Z, Madarasz E, et al. GABA signalling during development:new data and old questions. Cell Tissue Res, 2001,305(2):239-246.
20
Hagiwara N, Katarova Z, Siracusa L.D, et al. Nonneuronal expression of the GABA (A) beta3 subunit gene is required for normal palate development in mice. Dev Biol, 2003,254(1):93-101.
21
Ding H, Wu X, Bostrom H, et al. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Nat Genet, 2004,36(10):1111-1116.
22
Bush JO, Lan Y, Jiang R. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene. Proc Natl Acad Sci U S A, 2004,101(18):7022-7027.
23
Cuervo R, Valencia C, Chandraratna RA, et al. Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid.Dev Biol, 2002,245(1):145-156.
24
Cuervo R, Covarrubias L. Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis. Development, 2004,131(1):15-24.
25
Chou MJ, Kosazuma T, Takigawa T, et al. Palatal shelf movement during palatogenesis:a fate map of the fetal mouse palate cultured in vitro. Anat Embryol (Berl), 2004,208(1):19-25.
26
Takigawa T, Shiota K. Terminal differentiation of palatal medial edge epithelial cells in vitro is not necessarily dependent on palatal shelf contact and midline epithelial seam formation. Int J Dev Biol, 2004,48(4):307-317.
27
Takahara S, Takigawa T, Shiota K. Programmed cell death is not a necessary prerequisite for fusion of the fetal mouse palate. Int J Dev Biol, 2004,48(1):39-46.
28
Cui XM, Chai Y, Chen J, et al. TGF-beta3-dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusion.Dev Dyn, 2003,227(3):387-394.
29
Vaziri Sani F, Hallberg K, Harfe BD, et al. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation. Dev Biol, 2005,285(2):490-495.
30
Xu X, Han J, Ito Y, et al. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.Dev Biol, 2006,297(1):238-248.
31
Dudas M, Nagy A, Laping NJ, et al. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway. Dev Biol, 2004, 266(1):96-108.
32
Casey LM, Lan Y, Cho ES, et al. Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn, 2006,235(7):1830-1844.
No related articles found!
阅读次数
全文


摘要